دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Dominic C.Y. Foo
سری:
ISBN (شابک) : 0323901689, 9780323901680
ناشر: Elsevier
سال نشر: 2022
تعداد صفحات: 495
[498]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Chemical Engineering Process Simulation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبیه سازی فرآیند مهندسی شیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شبیه سازی فرآیند مهندسی شیمی، ویرایش دوم کاربران را از طریق فرآیندهای شیمیایی و عملیات واحد با استفاده از نرم افزار شبیه سازی اصلی مورد استفاده در بخش صنعتی راهنمایی می کند. این کتاب به پیشبینی ویژگیهای یک فرآیند با استفاده از مدلهای ریاضی و ابزارهای شبیهسازی فرآیند به کمک رایانه، و همچنین نحوه مدلسازی و شبیهسازی عملکرد فرآیند قبل از طراحی دقیق فرآیند کمک میکند. پوشش محتوا شامل شبیه سازی حالت پایدار و پویا، طراحی فرآیند، کنترل و بهینه سازی است. علاوه بر این، خوانندگان با شبیه سازی گاز طبیعی، بیوشیمیایی، تصفیه فاضلاب و فرآیندهای دسته ای آشنا خواهند شد.
Chemical Engineering Process Simulation, Second Edition guides users through chemical processes and unit operations using the main simulation software used in the industrial sector. The book helps predict the characteristics of a process using mathematical models and computer-aided process simulation tools, as well as how to model and simulate process performance before detailed process design takes place. Content coverage includes steady-state and dynamic simulation, process design, control and optimization. In addition, readers will learn about the simulation of natural gas, biochemical, wastewater treatment and batch processes.
Front Cover Chemical Engineering Process Simulation Chemical Engineering Process Simulation Copyright Contents Contributors Acknowledgments How to use this book I - Basics of process simulation 1 - Introduction to process simulation∗ 1.1 Process design and simulation 1.2 Historical perspective for process simulation 1.3 Basic architectures for commercial software 1.4 Basic algorithms for process simulation 1.4.1 Sequential modular approach 1.4.2 Equation-oriented approach 1.5 Degrees of freedom analysis 1.6 Incorporation of process synthesis model and sequential modular approach 1.6.1 Ten good habits for process simulation Exercises References Further reading 2 - Registration of new components∗ 2.1 Registration of hypothetical components 2.1.1 Hypothetical component registration with Aspen HYSYS 2.1.2 Hypothetical component registration with PRO/II 2.2 Registration of crude oil Exercise References 3 - Physical property estimation and phase behavior for process simulation∗ 3.1 Chemical engineering processes 3.1.1 Inlet separator 3.1.2 Heat exchanger 3.1.3 Gas compressor 3.2 Thermodynamic processes 3.2.1 Characteristic thermodynamic relationships (Smith et al.) 3.2.1.1 Internal energy (U) 3.2.1.2 Enthalpy (H) 3.2.1.3 Entropy (S) 3.2.1.4 Gibbs free energy (G) 3.2.1.5 Helmholtz free energy (A) 3.2.2 Maxwell relationships 3.3 Equations of state 3.3.1 The ideal gas law (c.1834) 3.3.2 Corrections to the ideal gas law (cubic equations of state) 3.3.2.1 Van der Waals 3.3.2.2 Redlich–Kwong 3.3.2.3 Peng–Robinson 3.3.2.4 Reducing the “attractive force” 3.3.2.5 Increasing the “attractive force” 3.4 Liquid volumes (Walas, 1985) 3.5 Viscosity and other properties 3.6 Phase equilibria 3.6.1 Vapor phase correction 3.6.2 Liquid phase corrections 3.6.3 Bringing it all together 3.7 Flash calculations (Smith and Van Ness, 1975) 3.7.1 “MESH” equations 3.7.1.1 Material balance 3.7.1.2 Equilibrium 3.7.1.3 Summation 3.7.1.4 Heat balance 3.7.2 Bubble point flash 3.7.2.1 Methodology 3.7.3 Dew point flash 3.7.4 Two-phase pressure–temperature flash 3.7.5 Other flash routines 3.8 Phase diagrams 3.8.1 Pressure–temperature diagrams of pure components and mixtures 3.8.2 Retrograde behavior 3.9 Conclusions Exercises References 4 - Simulation of recycle streams∗ 4.1 Types of recycle streams 4.2 Tips in handling recycle streams 4.2.1 Analyze the flowsheet 4.2.2 Provide estimates for recycle streams 4.2.3 Simplify the flowsheet 4.2.4 Avoid overspecifying mass balance 4.2.5 Check for trapped material 4.2.6 Increase number of iterations 4.3 Recycle convergence and acceleration techniques Exercises References Further reading II - UniSim design 5 - Basics of process simulation with UniSim design∗ 5.1 Example on n-octane production 5.2 Stage 1: basic simulation setup 5.3 Stage 2: modeling of reactor 5.4 Stage 3: modeling of separation unit 5.5 Stage 4: modeling of recycle system 5.5.1 Material recycle system 5.5.2 Energy recycle system 5.6 Conclusions Exercises References 6 - Design and simulation of distillation processes∗ 6.1 Fundamentals of distillation calculations 6.2 Distillation column simulation 6.3 Debutanizer example 6.3.1 Setting up the problem 6.3.2 Operating pressure selection 6.3.3 Effect of pressure on relative volatility 6.3.4 Effect of pressure on utility selection 6.4 Preliminary design using short cut distillation 6.5 Rigorous distillation column design 6.6 Conclusions Exercises References 7 - Modeling and optimization of separation and heating medium systems for offshore platform∗ 7.1 Oil and gas processing facility for offshore platform 7.2 Modeling of oil and gas processing facilities 7.3 Process optimization of heating medium systems 7.4 Heat exchanger design consideration Exercises References III - Symmetry 8 - Basics of process simulation with Symmetry∗ 8.1 Example on n-octane production 8.2 Establishing the thermodynamic model 8.3 Process modeling 8.3.1 Defining reactor inlet feed streams 8.3.2 Modeling of reactor 8.3.3 Modeling of separation units 8.3.4 Modeling of recycle systems 8.4 Conclusions Exercises Reference 9 - Process modeling and analysis of a natural gas dehydration process using tri-ethylene glycol (TEG) via Symmetry∗ 9.1 Introduction 9.2 Process description 9.3 Process simulation 9.3.1 Thermodynamic model and feed stream specification 9.3.2 Base case simulation 9.4 Dew point evaluation with Case Study tool 9.5 Process improvement with optimizer 9.6 Conclusions Exercises References IV - SuperPro designer 10 - Basics of batch process simulation with SuperPro Designer∗ 10.1 Basic steps for batch process simulation 10.2 Case study on biochemical production 10.3 Basic simulation setup 10.4 Setting for vessel procedure 10.4.1 Spray drying procedure 10.4.2 Process scheduling 10.4.3 Strategies for batch process debottlenecking 10.4.4 Economic evaluation 10.5 Conclusion 10.6 Further reading Exercise References 11 - Modeling of citric acid production using SuperPro Designer∗ 11.1 Introduction 11.2 Process description 11.2.1 Fermentation section 11.2.2 Isolation section 11.3 Model setup highlights 11.3.1 Material charges 11.3.2 Modeling the fermentation step 11.3.3 Modeling the cleaning operations 11.4 Scheduling setup 11.4.1 Operating in staggered mode 11.4.2 Operating with independent cycling 11.4.3 Calculating the minimum cycle time 11.5 Process simulation results 11.6 Process scheduling and debottlenecking 11.7 Process economics 11.7.1 Capital investment costs 11.7.2 Operating costs 11.7.3 Economic evaluation 11.8 Variability analysis 11.9 Conclusions Exercises Exercise 1: Decreasing the cycle time Exercise 2: Increasing the batch size Acknowledgments References Further reading 12 - Design and optimization of wastewater treatment plant (WWTP) for the poultry industry∗ 12.1 Introduction 12.2 Case study: poultry WWTP 12.3 Base case simulation model 12.4 Process optimization 12.5 Conclusion 12.6 Appendix A 12.7 Exercise References V - aspenONE engineering 13 - Basics of process simulation with Aspen HYSYS∗ 13.1 Example on n-octane production Exercise References 14 - Process simulation and design for acetaldehyde production∗ 14.1 Introduction 14.2 Process simulation 14.2.1 Simulation setup 14.2.2 Process flowsheeting 14.2.2.1 Dehydrogenation of ethanol and phase separation 14.2.2.2 Hydrogen recovery 14.2.2.3 Acetaldehyde purification 14.3 Process analysis/potential process enhancement 14.3.1 Energy recovery 14.3.2 Operating temperature of flash separator 14.4 Conclusion Exercises References 15 - Dynamic simulation for process control with Aspen HYSYS∗ 15.1 Introduction 15.2 Dynamic model overview 15.2.1 Steady-state and dynamic models 15.2.2 Dynamic model usage 15.3 Dynamic modeling concepts2 15.3.1 Hold-up 15.3.1.1 Material hold-up 15.3.1.2 Energy hold-up 15.3.2 Pressure-flow hydraulics 15.3.2.1 Definition of flow conductance 15.3.2.1.1 Direct flow conductance specification 15.3.2.1.2 Valves 15.3.2.1.3 Piping hydraulics 15.3.2.2 Head and energy terms 15.3.3 Dynamic model information requirements 15.3.4 Setting up a dynamic model in Aspen HYSYS 15.3.4.1 Creating a steady-state model 15.3.4.2 Equipment parameter and flowsheet pressure flow configuration 15.3.4.3 Numerical solver configuration 15.4 Constructing a dynamic model in HYSYS (Aspentech Ltd, 2021) 15.4.1 Steady-state process modeling4 15.4.2 Setting up dynamic parameters in the steady-state environment 15.4.2.1 Valve 15.4.2.2 Separator 15.4.2.3 Pump 15.4.2.4 Heat exchanger 15.4.2.4.1 Duty 15.4.2.4.2 Volume 15.4.2.4.3 Pressure-flow hydraulics 15.4.2.5 Pipe 15.4.2.6 Controllers 15.4.2.7 Stream pressure boundaries within the battery limit 15.4.2.8 Integrator settings 15.4.3 Transitioning to dynamics8 15.5 Using a dynamic model for process control tuning 15.5.1 Single loop feedback control overview 15.5.1.1 Definition of feedback control 15.5.1.2 PID control 15.5.2 Setting up the tuning scenario9 15.5.3 Running the case studies 15.5.4 Other tuning strategies 15.5.4.1 Ziegler-Nichols 15.5.4.2 Auto-tune variation (ATV) technique 15.6 Conclusion Exercises References Further reading 16 - Basics of process simulation with Aspen Plus∗ 16.1 Example on n-octane production 16.1.1 Stage 1: simulation setup in properties environment 16.1.2 Stage 2: modeling of reactor in Simulation environment 16.1.3 Stage 3: modeling of separator in Simulation environment 16.1.4 Stage 4: modeling of recycling in the Simulation environment 16.1.5 Stage 5: simulation of heat integration scheme 16.2 Summary of the n-octane simulation References Further readings 17 - Design and evaluation of alternative processes for the manufacturing of bio-jet fuel (BJF) intermediate∗ 17.1 Introduction 17.2 Overview 17.2.1 Components and physical properties 17.2.2 Reaction kinetics of the aldol condensation reaction 17.2.3 Economic evaluation and CO2 emission analysis 17.3 Process development 17.3.1 Scheme 12 17.3.1.1 Steam-stripping 17.3.1.2 Distillation-based furfural separation 17.3.2 Scheme 23 17.3.3 Scheme 34 17.3.4 Aldol condensation process 17.4 Process analysis 17.4.1 Economic evaluation 17.4.2 CO2 emission analysis 17.4.3 Future prospects in BJF production 17.5 Conclusion Exercise Appendix References 18 - Production of diethyl carbonate from direct CO2 conversion∗ 18.1 Introduction 18.2 Process overview 18.2.1 Physical properties 18.2.2 Reaction pathway and kinetic expression 18.2.3 Basis for evaluating the process economics and carbon emission 18.2.3.1 Economics 18.2.3.2 Carbon emission 18.3 The direct CO2-to-DEC process 18.3.1 Process development 18.3.2 Optimization 18.4 Techno-economic and CO2 emission analysis 18.4.1 Techno-economic analysis 18.4.2 CO2-emission analysis 18.5 Conclusions Exercises Appendix A.1 Parameters for pure-component properties A.2 Binary interaction parameters for the NRTL model A.3 Parameters for Henry's constant equation (temperature in °C) Supplementary materials References 19 - Multiplatform optimization on unit operation and process designs∗ 19.1 Introduction 19.2 Aspen Plus automation interface 19.3 COM objects in MATLAB 19.4 Aspen Simulation Workbook (ASW) 19.5 Multiplatform optimization 19.5.1 Case study—dichloro-methane solvent recovery system 19.5.2 Sensitivity analysis with automation interface in MATLAB 19.5.3 Multiobjective and multilevel problem under multiplatform optimization with automation interface in MATLAB 19.5.4 Sensitivity analysis with automation interface in excel using ASW 19.6 Conclusion Exercises References 20 - Flexible design strategy for process controllability∗ 20.1 Introduction 20.2 Flexibility index model 20.3 Aspen Plus RCSTR module case study 20.4 Vertex methods for calculating FI of RCSTR 20.5 Aspen Plus Dynamics for RCSTR controllability verification 20.6 Conclusion Exercises References Index A B C D E F G H I M O P R S T U V W Back Cover