ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design

دانلود کتاب طراحی مهندسی شیمی: اصول، عمل و اقتصاد طراحی کارخانه و فرآیند

Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design

مشخصات کتاب

Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design

ویرایش: [3 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0128211792, 9780128211793 
ناشر: Butterworth-Heinemann 
سال نشر: 2021 
تعداد صفحات: 1040
[1019] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 55 Mb 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی مهندسی شیمی: اصول، عمل و اقتصاد طراحی کارخانه و فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی مهندسی شیمی: اصول، عمل و اقتصاد طراحی کارخانه و فرآیند

طراحی مهندسی شیمی: اصول، عمل و اقتصاد طراحی کارخانه و فرآیندیکی از شناخته شده ترین و پرکاربردترین متون موجود برای دانشجویان مهندسی شیمی است. متن به کاربرد اصول مهندسی شیمی در طراحی فرآیندها و تجهیزات شیمیایی می پردازد. ویرایش سوم ویژگی های بارز خود را در حوزه، وضوح و تأکید عملی حفظ می کند، در حالی که آخرین کدها و استانداردهای ایالات متحده، از جمله کدهای طراحی API، ASME و ISA و استانداردهای ANSI، و همچنین پوشش آخرین جنبه های طراحی فرآیند، عملیات، را ارائه می دهد. ایمنی، پیشگیری از تلفات، انتخاب تجهیزات و موارد دیگر. این متن برای دانشجویان مهندسی شیمی و بیوشیمی (سال آخر کارشناسی، بعلاوه مناسب برای دوره‌های طراحی سنگ بنا در صورت گذراندن) و متخصصان صنعت (بخش‌های فرآیند شیمیایی، بیوشیمی، دارویی، پتروشیمی) طراحی شده است.


توضیحاتی درمورد کتاب به خارجی

Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design is one of the best-known and most widely adopted texts available for students of chemical engineering. The text deals with the application of chemical engineering principles to the design of chemical processes and equipment. The third edition retains its hallmark features of scope, clarity and practical emphasis, while providing the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards, as well as coverage of the latest aspects of process design, operations, safety, loss prevention, equipment selection, and more. The text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken), and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors).



فهرست مطالب

Chemical Engineering Design
Copyright
Preface to the Third Edition
How To Use This Book
	Part I: Process Design
	Part II: Plant Design
	Supplementary Material
Acknowledgments
Acknowledgments_2022_Chemical-Engineering-Design
1. Introduction to design
	1.1 Introduction
	1.2 Nature of design
		1.2.1 The design objective (the need)
		1.2.2 Setting the design basis
		1.2.3 Generation of possible design concepts
		1.2.4 Fitness testing
		1.2.5 Economic evaluation, optimization, and selection
		1.2.6 Detailed design and equipment selection
		1.2.7 Procurement, construction, and operation
	1.3 The organization of a chemical engineering project
	1.4 Project documentation
		1.4.1 Design documents
			Calculation sheets
			Drawings
			Specification sheets
			Process manuals
			Operating manuals
		1.4.2 Design reports
	1.5 Codes and standards
	1.6 Design factors (design margins)
	1.7 Systems of units
	1.8 Product design
		1.8.1 New Chemical Products
			New molecules
			New formulations
			New materials
			New equipment and devices
		1.8.2 Understanding customer needs
		1.8.3 Developing product specifications
			Quality function deployment
		1.8.4 Fitness testing
			Prototype testing
			Safety and efficacy testing
	1.9 References
	1 . Nomenclature
	1 . Problems
2. Process flowsheet development
	2.1 Introduction
	2.2 Flowsheet presentation
		2.2.1 Block diagrams
		2.2.2 PFD symbols
		2.2.3 Presentation of stream flow rates
		2.2.4 Information to be included
			Essential information
			Optional information
		2.2.5 Layout
		2.2.6 Precision of data
		2.2.7 Basis of the calculation
		2.2.8 Batch processes
		2.2.9 Utilities
		2.2.10 Equipment identification
		2.2.11 Flowsheet drafting programs
	2.3 The anatomy of a chemical manufacturing process
		2.3.1 Components of a chemical process
			Stage 1. Raw material storage
			Stage 2. Feed preparation
			Stage 3. Reaction
			Stage 4. Product separation
			Stage 5. Purification
			Stage 6. Product storage
			Ancillary processes
		2.3.2 Continuous and batch processes
			Choice of continuous versus batch production
		2.3.3 Effect of reactor conversion and yield on flowsheet structure
			Conversion
			Selectivity
			Yield
			Effect of conversion, selectivity, and yield on flowsheet structure
			Use of excess reagent
			Sources of conversion, selectivity, and yield data
		2.3.4 Recycles and purges
			Purge
			Bypass
	2.4 Selection, modification, and improvement of commercially proven processes
		2.4.1 Sources of information on manufacturing processes
			Patents
			Consultants
			Vendors
		2.4.2 Factors considered in process selection
			Freedom to practice
			Safety and environmental performance
			Government and international restrictions
			Experience and reliability
		2.4.3 Modification and improvement of established processes
			Modifications to improve process economics
			Modifications to improve plant safety
			Modifications to improve plant reliability
			Modifications to improve environmental impact
	2.5 Revamps of existing plants
		2.5.1 Flowsheet development in revamp projects
		2.5.2 Major equipment debottlenecking
			Reactor debottlenecking
			Separation column debottlenecking
		2.5.3 Revamp of heat exchange networks
			Heat exchangers
			Heaters and coolers
		2.5.4 Revamp of plant hydraulics
			Compressors
			Pumps
			Control valves
	2.6 Synthesis of novel flowsheets
		2.6.1 Overall procedure for flowsheet synthesis
			Step 1. Initial economics
			Step 2. Set yield targets
			Step 3. Preliminary economic assessment
			Step 4. Refine process structure
			Step 5. PFD review
			Step 6. Preliminary process hazard analysis
			Step 7. Revise economic assessment
		2.6.2 Economic analysis in process synthesis
		2.6.3 Use of targets in process synthesis
		2.6.4 Use of heuristic rules in process synthesis
		2.6.5 Role of optimization in process synthesis
	2.7 PFD review
		2.7.1 PFD review procedure
		2.7.2 PFD review documentation and issue resolution
	2.8 Overall procedure for flowsheet development
	2.9 References
	International standards
	2 . Nomenclature
		Common PFD abbreviations
	2 . Problems
3. Utilities and energy-efficient design
	3.1 Introduction
	3.2 Utilities
		3.2.1 Electricity
		3.2.2 Fired heat
		3.2.3 Steam
		3.2.4 Hot oil and heat transfer fluids
		3.2.5 Cooling water
		3.2.6 Refrigeration
		3.2.7 Water
			Demineralized water
		3.2.8 Compressed air
			Cooling air
		3.2.9 Nitrogen
	3.3 Energy recovery
		3.3.1 Heat exchange
		3.3.2 Waste-heat boilers
		3.3.3 High-temperature reactors
		3.3.4 High-pressure process streams
			Gas streams
			Liquid streams
		3.3.5 Heat pumps
	3.4 Waste stream combustion
		3.4.1 Reactor off-gases
		3.4.2 Liquid and solid wastes
	3.5 Heat exchanger networks
		3.5.1 Pinch technology
			Simple two-stream problem
			Four-stream problem
			Thermodynamic significance of the pinch
		3.5.2 The problem table method
			Summary
		3.5.3 Heat exchanger network design
			Grid representation
			Network design for maximum energy recovery
			Network design above the pinch
			Network design below the pinch
			Stream splitting
			Summary
		3.5.4 Minimum number of exchangers
		3.5.5 Threshold problems
		3.5.6 Determining utility consumption
		3.5.7 Process integration: Integration of other process operations
		3.5.8 Computer tools for heat exchanger network design
	3.6 Energy management in unsteady processes
		3.6.1 Differential energy balances
		3.6.2 Energy recovery in batch and cyclic processes
			Semicontinuous operation
			Sequencing multiple batches
			Indirect heat recovery
	3.7 References
	American and international standards
	3 . Nomenclature
	3 . Problems
4. Process simulation
	4.1 Introduction
	4.2 Process simulation programs
	4.3 Specification of components
		4.3.1 Pure components
		4.3.2 Pseudocomponents
		4.3.3 Solids and salts
		4.3.4 User components
	4.4 Selection of physical property models
		4.4.1 Sources of physical property data
		4.4.2 Prediction of physical properties
			Group contribution methods
		4.4.3 Phase equilibrium models
		4.4.4 Prediction of phase equilibrium constants
			Group contribution methods
			Sour water systems
			Electrolyte systems
			Vapor–liquid equilibrium at high pressures
			Liquid–liquid equilibrium
		4.4.5 Choice of phase equilibrium model for design calculations
		4.4.6 Validation of physical property models
	4.5 Simulation of unit operations
		4.5.1 Reactors
			Conversion reactor (stoichiometric reactor)
			Equilibrium reactor
			Gibbs reactor
			Continuous stirred tank reactor
			Plug flow reactor
			Yield shift reactor
			Modeling real reactors
		4.5.2 Distillation
			Shortcut models
			Rigorous models
			Column convergence
			Complex columns for fractionation
			Column sizing
		4.5.3 Other separations
			Component splitter models
		4.5.4 Heat exchange
		4.5.5 Hydraulics
		4.5.6 Solids handling
	4.6 User models
		4.6.1 Spreadsheet models
		4.6.2 User subroutines
	4.7 Flowsheets with recycle
		4.7.1 Tearing the flowsheet
		4.7.2 Convergence methods
			Successive substitution (direct substitution)
			Bounded Wegstein
			Newton and quasi-Newton methods
		4.7.3 Manual calculations
		4.7.4 Convergence problems
	4.8 Flowsheet optimization
		4.8.1 Use of controllers
		4.8.2 Optimization using process simulation software
	4.9 Dynamic simulation
	4.10 References
	American standards
	4.11 Nomenclature
	4.12 Problems
5. Instrumentation and process control
	5.1 Introduction
	5.2 The P&I diagram
		5.2.1 Symbols and layout
		5.2.2 Basic symbols
			Control valves
			Actuators
			Instrument Lines
			Failure mode
			General instrument and controller symbols
			Distributed control: Shared display symbols
			Other common symbols
			Type of instrument
	5.3 Process instrumentation and control
		5.3.1 Instruments
		5.3.2 Instrumentation and control objectives
		5.3.3 Automatic control schemes
			Guide rules
	5.4 Conventional control schemes
		5.4.1 Level control
		5.4.2 Pressure control
		5.4.3 Flow control
		5.4.4 Heat exchangers
			Condenser control
			Reboiler and vaporizer control
		5.4.5 Cascade control
		5.4.6 Ratio control
		5.4.7 Distillation column control
		5.4.8 Reactor control
	5.5 Alarms, safety trips, and interlocks
		Outline placeholder
			Interlocks
	5.6 Batch process control
	5.7 Computer control systems
	5.8 References
	American and international standards
	5 . Problems
6. Materials of construction
	6.1 Introduction
	6.2 Material properties
	6.3 Mechanical properties
		6.3.1 Tensile strength
		6.3.2 Stiffness
		6.3.3 Toughness
		6.3.4 Hardness
		6.3.5 Fatigue
		6.3.6 Creep
		6.3.7 Effect of temperature on the mechanical properties
	6.4 Corrosion resistance
		6.4.1 Uniform corrosion
		6.4.2 Galvanic corrosion
		6.4.3 Pitting
		6.4.4 Intergranular corrosion
		6.4.5 Effect of stress
		6.4.6 Erosion-corrosion
		6.4.7 High-temperature oxidation and sulfidation
		6.4.8 Hydrogen embrittlement
	6.5 Selection for corrosion resistance
		6.5.1 Corrosion charts
	6.6 Material costs
	6.7 Contamination
		6.7.1 Surface finish
	6.8 Commonly used materials of construction
		6.8.1 Iron and steel
		6.8.2 Stainless steel
			Types
			Mechanical properties
			General corrosion resistance
			High-alloy-content stainless steels
		6.8.3 Nickel
		6.8.4 Monel
		6.8.5 Inconel and Incoloy
		6.8.6 The Hastelloys
		6.8.7 Copper and copper alloys
		6.8.8 Aluminum and its alloys
		6.8.9 Lead
		6.8.10 Titanium
		6.8.11 Tantalum
		6.8.12 Zirconium
		6.8.13 Silver
		6.8.14 Gold
		6.8.15 Platinum
	6.9 Plastics as materials of construction for chemical plants
		6.9.1 Polyvinyl chloride
		6.9.2 Polyolefins
		6.9.3 Polytetrafluoroethylene
		6.9.4 Polyvinylidene fluoride
		6.9.5 Glass-fiber–reinforced plastics
		6.9.6 Rubber
	6.10 Ceramic materials (silicate materials)
		6.10.1 Glass
		6.10.2 Stoneware
		6.10.3 Acid-resistant bricks and tiles
		6.10.4 Refractory materials (refractories)
	6.11 Carbon
	6.12 Protective coatings
	6.13 Design for corrosion resistance
	6.14 References
	American standards
	6 . Nomenclature
	6 . Problems
7. Capital cost estimating
	7.1 Introduction
	7.2 Components of capital cost
		7.2.1 Fixed capital investment
			ISBL plant costs
			Offsite costs
			Engineering costs
			Contingency charges
		7.2.2 Working capital
	7.3 Accuracy and purpose of capital cost estimates
		7.3.1 AACE International cost estimate classes
		7.3.2 Development of cost estimates
	7.4 Order-of-magnitude estimates
		7.4.1 Cost curve methods
			Economy of scale
		7.4.2 Step count method
		7.4.3 Reverse engineering methods
			Payback method
			Turnover ratio method
			TCOP method
	7.5 Estimating purchased equipment costs
		7.5.1 Sources of equipment cost data
		7.5.2 Cost curves for purchased equipment costs
		7.5.3 Detailed method of cost estimating
		7.5.4 Use of vendor data in cost estimating
	7.6 Estimating installed costs: The factorial method
		7.6.1 Lang factors
		7.6.2 Detailed factorial estimates
		7.6.3 Materials factors
		7.6.4 Summary of the factorial method
	7.7 Cost escalation
	7.8 Location factors
	7.9 Estimating off-site capital costs
	7.10 Computer tools for cost estimating
		7.10.1 Mapping simulation data
		7.10.2 Design factors in ACCE
		7.10.3 Pressure vessels
		7.10.4 Nonstandard components in ACCE
	7.11 Validity of cost estimates
	7.12 References
	7 . Nomenclature
	7. . Acronyms
	7 . Problems
8. Estimating revenues and production costs
	8.1 Introduction
	8.2 Costs, revenues, and profits
		8.2.1 Variable costs of production
		8.2.2 Fixed costs of production
		8.2.3 Revenues
			By-product revenues
		8.2.4 Margins and profits
			Margins
			Profits
	8.3 Product and raw material prices
		8.3.1 Pricing fundamentals
		8.3.2 Sources of price data
			Internal company forecasts
			Trade journals
			Consultants
			Online brokers and suppliers
			Reference books
		8.3.3 Forecasting prices
		8.3.4 Transfer pricing
	8.4 Estimating variable production costs
		8.4.1 Raw materials costs
		8.4.2 Utilities costs
		8.4.3 Consumables costs
		8.4.4 Waste disposal costs
	8.5 Estimating fixed production costs
		8.5.1 Labor costs
		8.5.2 Maintenance costs
		8.5.3 Land, rent, and local property taxes
		8.5.4 Insurance
		8.5.5 Interest payments
		8.5.6 Corporate overhead charges
		8.5.7 License fees and royalties
	8.6 Summarizing revenues and production costs
		Outline placeholder
			Closing mass balance
			Estimating utility costs
			Estimating fixed costs
			Estimating working capital
			Estimating annualized capital costs
			Estimating cost of production
	8.7 References
	8.8 Nomenclature
	8.9 Problems
9. Economic evaluation of projects
	9.1 Introduction
	9.2 Cash flows during a project
		9.2.1 Cash flow diagrams
		9.2.2 Cash outflows during design and construction
		9.2.3 Working capital
		9.2.4 Cash flows at the end of the project
	9.3 Project financing
		9.3.1 Basics of corporate accounting and finance
			Balance sheet
			Income statement
			Cash flow statement
			Summary
		9.3.2 Debt financing and repayment
		9.3.3 Equity financing
		9.3.4 Cost of capital
	9.4 Taxes and depreciation
		9.4.1 Taxes
		9.4.2 Investment incentives
		9.4.3 Depreciation charges
			Straight-line depreciation
			Declining-balance depreciation
			Modified Accelerated Cost Recovery System
	9.5 Simple methods for economic analysis
		9.5.1 Pay-back time
		9.5.2 Return on investment
	9.6 Present value methods
		9.6.1 Time value of money
			Future worth
			Inflation
		9.6.2 Net present value
		9.6.3 Discounted cash flow rate of return
			Cash flow table
			Simple pay-back period
			Net present value
			Internal rate of return (DCFROR)
			Summary
	9.7 Annualized cost methods
		9.7.1 Amortization charges
		9.7.2 Annualized capital cost and total annualized cost
	9.8 Sensitivity analysis
		9.8.1 Simple sensitivity analysis
		9.8.2 Parameters to study
		9.8.3 Statistical methods for risk analysis
		9.8.4 Contingency costs
	9.9 Project portfolio selection
		9.9.1 Types of projects
		9.9.2 Limits on the project portfolio
		9.9.3 Decision criteria
	9.10 References
	American laws and standards
	9 . Nomenclature
	9 . Problems
10. Safety and loss prevention
	10.1 Introduction
		10.1.1 Safety legislation
		10.1.2 Layers of plant safety
		10.1.3 Intrinsic and extrinsic safety
	10.2 Materials hazards
		10.2.1 Toxicity
		10.2.2 Flammability
			Flash point
			Autoignition temperature
			Flammability limits
		10.2.3 Materials incompatibility
		10.2.4 Ionizing radiation
		10.2.5 Safety Data Sheets
		10.2.6 Design for materials hazards
	10.3 Process hazards
		10.3.1 Pressure
		10.3.2 Temperature deviations
		10.3.3 Noise
		10.3.4 Loss of containment
		10.3.5 Fires and ignition sources
			Electrical equipment
			Static electricity
			Process flames
			Miscellaneous sources
			Flame traps
			Fire protection
		10.3.6 Explosions
			Confined vapor cloud explosion (CVCE)
			Unconfined vapor cloud explosion (UCVCE)
			Boiling liquid expanding vapor explosion (BLEVE)
			Dust explosions
			Explosivity properties
			Design implications
		10.3.7 Human error
	10.4 Analysis of product and process safety
		10.4.1 Safety checklists
			Design safety checklist
	10.5 Failure mode effect analysis
		10.5.1 FMEA procedure
		10.5.2 FMEA rating scales
		10.5.3 Interpretation of FMEA scores
		10.5.4 Tools for FMEA
	10.6 Safety indices
		10.6.1 Calculation of the Dow F&EI
			Material factor
			General process hazards
			Special process hazards
		10.6.2 Potential loss
		10.6.3 Basic preventive and protective measures
		10.6.4 Mond fire, explosion, and toxicity index
			Procedure
			Preventive measures
			Implementation
		10.6.5 Summary
	10.7 Hazard and operability studies
		10.7.1 Basic principles
		10.7.2 Explanation of guide words
		10.7.3 Procedure
	10.8 Quantitative hazard analysis
		10.8.1 Fault trees
		10.8.2 Equipment reliability
		10.8.3 Tolerable risk and safety priorities
		10.8.3 Computer software for quantitative risk analysis
	10.9 Pressure relief
		10.9.1 Pressure-relief scenarios
		10.9.2 Pressure-relief loads
		10.9.3 Design of pressure-relief valves
			Spring-loaded relief valves
			Pilot-operated relief valves
			Sizing relief valves
		10.9.4 Design of non-reclosing pressure relief devices
		10.9.5 Design of pressure-relief discharge systems
		10.9.6 Protection from underpressure (vacuum)
	10.10 References
	Bibliography
	10 . Nomenclature
	10 . Problems
11. General site considerations
	11.1 Introduction
	11.2 Plant location and site selection
		Outline placeholder
			Marketing area
			Raw materials
			Transport
			Availability of labor
			Utilities (services)
			Environmental impact and effluent disposal
			Local community considerations
			Land (site considerations)
			Climate
			Political and strategic considerations
	11.3 Site layout
	11.4 Plant layout
		Outline placeholder
			Costs
			Process requirements
			Operation
			Maintenance
			Safety
			Plant expansion
			Modular construction
			General considerations
		11.4.1 Techniques used in site and plant layout
	11.5 Environmental considerations
		11.5.1 Environmental legislation
			The National Environmental Policy Act of 1969
			The Clean Air Act (1970)
			The Federal Water Pollution Control Act (“The Clean Water Act,” 1972)
			The Safe Drinking Water Act (1974)
			The Resource Conservation and Recovery Act (1976)
			The Comprehensive Environmental Response, Compensation and Liability Act (or Superfund, 1980)
			The Superfund Amendments and Reauthorization Act (1986)
			The Pollution Prevention Act (1990)
			The Oil Pollution Act of 1990 (1990)
			The Department of the Environment Act (E-10, 1985)
			The Canadian Environmental Protection Act (C-33, 1999)
			The Canada Water Act (C-11, 1985)
		11.5.2 Waste minimization
		11.5.3 Waste management
			Gaseous wastes
			Liquid wastes
			Solid wastes
			Aqueous wastes
		11.5.4 Noise
		11.5.5 Visual impact
		11.5.6 Environmental auditing
			Life cycle assessment
	11.7 References
	American standards
12. Optimization in design
	12.1 Introduction
	12.2 The design objective
	12.3 Constraints and degrees of freedom
		12.3.1 Constraints
		12.3.2 Degrees of freedom
	12.4 Trade-offs
	12.5 Problem decomposition
	12.6 Optimization of a single decision variable
	12.7 Search methods
		12.7.1 Unrestricted search
		12.7.2 Regular search (three-point interval search)
		12.7.3 Golden-section search
		12.7.4 Quasi-Newton method
	12.8 Optimization of two or more decision variables
		12.8.1 Convexity
		12.8.2 Searching in two dimensions
		12.8.3 Problems in multivariable optimization
		12.8.4 Multivariable optimization
	12.9 Linear programming
	12.10 Nonlinear programming
		12.10.1 Successive linear programming
		12.10.2 Successive quadratic programming
		12.10.3 Reduced gradient method
	12.11 Mixed-integer programming
		12.11.1 Mixed-integer programming algorithms
		12.11.2 Superstructure optimization
	12.12 Optimization in industrial practice
		12.12.1 Optimization of process operations
		12.12.2 Optimization of batch and semicontinuous processes
		12.12.3 Optimization in process design
	12.13 References
	12 . Nomenclature
	12 . Problems
13. Equipment selection, specification, and design
	13.1 Introduction
	13.2 Sources of equipment design information
		13.2.1 Proprietary and nonproprietary equipment
		13.2.2 Published information on process equipment
			Technical literature
			Online information
	13.3 Guide to equipment selection and design
	13.4 References
14. Design of pressure vessels
	14.1 Introduction
		14.1.1 Classification of pressure vessels
	14.2 Pressure vessel codes and standards
	14.3 Fundamentals of strength of materials
		14.3.1 Principal stresses
		14.3.2 Theories of failure
		14.3.3 Elastic stability
		14.3.4 Secondary stresses
	14.4 General design considerations for pressure vessels
		14.4.1 Design pressure
		14.4.2 Design temperature
		14.4.3 Materials
		14.4.4 Maximum allowable stress (nominal design strength)
		14.4.5 Welded joint efficiency and construction categories
		14.4.6 Corrosion allowance
		14.4.7 Design loads
			Major loads
			Subsidiary loads
		14.4.8 Minimum practical wall thickness
	14.5 The design of thin-walled vessels under internal pressure
		14.5.1 Cylinders and spherical shells
		14.5.2 Heads and closures
			Choice of closure
		14.5.3 Design of flat ends
		14.5.4 Design of domed ends
			Hemispherical heads
			Ellipsoidal heads
			Torispherical heads
			Flanges (skirts) on domed heads
		14.5.5 Conical sections and end closures
			Cylindrical section
			Domed head
			Flat head
	14.6 Compensation for openings and branches
	14.7 Design of vessels subject to external pressure
	14.8 Design of vessels subject to combined loading
		Outline placeholder
			Primary stresses
			Principal stresses
			Allowable stress intensity
			Compressive stresses and elastic stability
			Stiffening
			Loading
		14.8.1 Weight loads
		14.8.2 Wind loads (tall vessels)
			Dynamic wind pressure
			Deflection of tall columns
			Wind-induced vibrations
		14.8.3 Earthquake loading
		14.8.4 Eccentric loads (tall vessels)
		14.8.5 Torque
			Dead weight of vessel
			Wind loading
			Analysis of stresses
			Check elastic stability (buckling)
	14.9 Vessel supports
		14.9.1 Saddle supports
			Design of saddles
		14.9.2 Skirt supports
			Skirt thickness
			Base ring and anchor bolt design
		14.9.3 Bracket supports
	14.10 Bolted flanged joints
		14.10.1 Types of flanges and selection
		14.10.2 Gaskets
		14.10.3 Flange faces
		14.10.4 Flange design
		14.10.5 Standard flanges
	14.11 Welded joint design
	14.12 Fatigue assessment of vessels
	14.13 Pressure tests
	14.14 High-pressure vessels
		14.14.1 Compound vessels
			Shrink-fitted cylinders
			Multilayer vessels
			Wound vessels
		14.14.2 Autofrettage
	14.15 Liquid storage tanks
	14.16 Capital cost of pressure vessels
	14.17 References
	Bibliography
	14.18 Nomenclature
	14.19 Problems
15. Design of reactors and mixers
	15.1 Introduction
	15.2 Reactor design: General procedure
		15.2.1 General procedure for reactor design
			Step 1: Collect required data
			Step 2: Select reaction conditions
			Step 3: Determine materials of construction
			Step 4: Determine the rate limiting step and critical sizing parameters of the reactor
			Step 5: Preliminary sizing, layout, and costing of reactor
			Step 6: Estimate reactor performance
			Step 7: Optimize the design
			Step 8: Prepare scale drawings for detailed design
		15.2.2 Ideal and real reactors
			Plug-flow reactor (PFR)
			Well-mixed reactor (WMR)
			Real reactors
	15.3 Sources of reaction engineering data
		15.3.1 Enthalpy of reaction
			Effect of temperature on heat of reaction
			Effect of pressure on heat of reaction
			Estimation of heat of reaction using process simulation programs
		15.3.2 Equilibrium constant and Gibbs free energy
		15.3.3 Reaction mechanisms, rate equations, and rate constants
		15.3.4 Transport properties
			Heat transfer
			Diffusivities
			Mass transfer coefficients
	15.4 Choice of reaction conditions
		15.4.1 Chemical or biochemical reaction
		15.4.2 Catalyst
		15.4.3 Temperature
		15.4.4 Pressure
		15.4.5 Reaction phase
		15.4.6 Solvent
		15.4.7 Concentrations
			Feeds
			By-products and contaminants
			Inerts
	15.5 Mixing
		15.5.1 Gas mixing
			15.5.2 Liquid mixing
			Inline mixing
			Stirred tanks
			Agitator power consumption
			Side-entering agitators
		15.5.3 Gas–liquid mixing
		15.5.4 Solid–liquid mixing
	15.6 Heating and cooling of reacting systems
		15.6.1 Heating and cooling reactors: Basic principles
		15.6.2 Heating and cooling stirred tank reactors
			Indirect heat transfer
			Direct heat transfer: Heating using live steam
			Direct heat transfer: Evaporative cooling
		15.6.3 Heating and cooling catalytic reactors
			Slurry reactors
			Fixed-bed reactors
			Fluidized-bed reactors
		15.6.4 Heat-exchange devices as reactors
			Homogeneous reaction
			Heterogeneous reaction
	15.7 Multiphase reactors
		15.7.1 Vapor–liquid reactors
		15.7.2 Liquid–liquid reactors
		15.7.3 Vapor–solid reactors
			Fixed-bed reactors
			Moving-bed reactors
			Fluidized-bed reactors
		15.7.4 Liquid–solid reactors
		15.7.5 Vapor–liquid–solid reactors
			Slurry reactors
			Trickle-bed reactors
	15.8 Reactor design for catalytic processes
		15.8.1 Design for homogeneous catalysis
		15.8.2 Design for heterogeneous catalysis
			Liquid–liquid catalysis
			Fluid–solid catalysis
		15.8.3 Design and selection of solid catalysts
			Structure and formulation of catalysts
			Physical properties of catalysts
			Catalyst testing and selection
		15.8.4 Design for catalyst deactivation and regeneration
			Catalyst deactivation mechanisms
			Reactor design for catalyst deactivation
			Reactor design for catalyst regeneration
	15.9 Design of bioreactors
		15.9.1 Enzyme catalysis
			Enzyme confinement and immobilization
		15.9.2 Cell cultivation
			Cell cultivation and growth cycle
			Cell immobilization
			Tissue culture
		15.9.3 Prevention of contamination in biological systems
			Chemical contamination
			Biological contamination and design for sterile operation
			Cleaning
		15.9.4 Feed preparation and consumption
		15.9.5 Batch fermentation
			Fermenter design
			Scale-up considerations
		15.9.6 Continuous fermentation
			Continuous fermenter design and scale-up
		15.9.7 Bioreactor instrumentation and control
		15.9.8 Safety and quality control of bioreactors
			Good Manufacturing Practices
			Containment
	15.10 Multifunctional batch reactors
		15.10.1 Design of batch reactors
		15.10.2 Multifunctional batch reactors
	15.11 Computer simulation of reactors
		15.11.1 Commercial process simulation models
		15.11.2 Network models
		15.11.3 Hydrodynamic models
	15.12 Determining actual reactor performance
		15.12.1 Measuring experimental reactor output
		15.12.2 Measuring commercial reactor behavior
			Tracer studies
			Reactor tomography
	15.13 Safety considerations in reactor design
		15.13.1 Inherently safer design principles applied to reactors
		15.13.2 Designing for exothermic reactions
		15.13.3 Venting and relief of reactive systems
	15.14 Capital cost of reactors
	15.15 References
	Bibliography
	15.16 Nomenclature
	15.17 Problems
16. Separation of fluids
	16.1 Introduction
	16.2 Gas–gas separations
		16.2.1 Adsorption
			Irreversible adsorption
			Reversible adsorption
			Pressure swing adsorption
			Temperature swing adsorption
			Adsorbent selection
			Adsorption equipment design
		16.2.2 Membrane separation
			Membrane selection and construction
			Membrane process design
		16.2.3 Cryogenic distillation
		16.2.4 Absorption and stripping
		16.2.5 Condensation
	16.3 Gas–liquid separators
		16.3.1 Settling velocity
		16.3.2 Vertical separators
		16.3.3 Horizontal separators
	16.4 Liquid–liquid separation
		16.4.1 Decanters (settlers)
			Decanter design
		16.4.2 Plate separators
		16.4.3 Coalescers
		16.4.4 Centrifugal separators
			Sedimentation centrifuges
			Hydrocyclones
	16.5 Separation of dissolved components
		16.5.1 Evaporators
			Direct-heated evaporators
			Long-tube evaporators (Fig. 16.17)
			Forced-circulation evaporators (Fig. 16.18)
			Wiped-film evaporators (Fig. 16.19)
			Short-tube evaporators
			Evaporator selection
			Evaporator design
			Auxiliary equipment
		16.5.2 Crystallization
			Tank crystallizers
			Scraped-surface crystallizers
			Circulating magma crystallizers (Fig. 16.21)
			Circulating liquor crystallizers (Fig. 16.22)
			Crystallizer design
		16.5.3 Precipitation
		16.5.4 Membrane separations
			Reverse osmosis
		16.5.5 Ion exchange
		16.5.6 Solvent extraction and leaching
			Solvent extraction (liquid–liquid extraction)
			Leaching
		16.5.7 Adsorption
		16.5.8 Chromatography
			Batch chromatography
			Gel permeation chromatography
			Affinity chromatography
			Continuous chromatography
	16.6 References
	16 . Nomenclature
	16 . Problems
17. Separation columns (distillation, absorption, and extraction)
	17.1 Introduction
		Outline placeholder
			Distillation column design
	17.2 Continuous distillation: Process description
		17.2.1 Reflux considerations
			Total reflux
			Minimum reflux
			Optimum reflux ratio
		17.2.2 Feed-point location
		17.2.3 Selection of column pressure
	17.3 Continuous distillation: Basic principles
		17.3.1 Stage equations
			Material balance
			Energy balance
		17.3.2 Dew point and bubble point
		17.3.3 Equilibrium flash calculations
			Adiabatic flash
	17.4 Design variables in distillation
	17.5 Design methods for binary systems
		17.5.1 Basic equations
			Material balance
			Energy balance
			Lewis–Sorel method (equimolar overflow)
		17.5.2 McCabe–Thiele method
			Procedure
	17.6 Multicomponent distillation: General considerations
		17.6.1 Key components
		17.6.2 Product specifications
		17.6.3 Number and sequencing of columns
			Tall columns
		17.6.4 Complex columns
		17.6.5 Distillation column sequencing for azeotropic mixtures
	17.7 Multicomponent distillation: Shortcut methods for stage and reflux requirements
		17.7.1 Minimum number of stages (Fenske equation)
		17.7.2 Minimum reflux ratio
		17.7.3 Feed-point location
	17.8 Multicomponent distillation: Rigorous solution procedures (computer methods)
		Outline placeholder
			Rating and design methods
		17.8.1 Linear algebra (simultaneous) methods
		17.8.2 Inside-out algorithms
		17.8.3 Relaxation methods
	17.9 Other distillation processes
		17.9.1 Batch distillation
		17.9.2 Vacuum distillation
		17.9.3 Steam distillation
		17.9.4 Reactive distillation
		17.9.5 Petroleum fractionation
	17.10 Plate efficiency
		17.10.1 Prediction of plate efficiency
			Multicomponent systems
		17.10.2 O’Connell’s correlation
			Absorbers
		17.10.3 Van Winkle’s correlation
		17.10.4 AIChE method
			AIChE method
			Estimation of physical properties
			Plate design parameters
			Multicomponent systems
		17.10.5 Entrainment
	17.11 Approximate column sizing
		Outline placeholder
			Plate spacing
			Column diameter
	17.12 Plate contactors
		Outline placeholder
			1. Sieve plate (perforated plate) (Fig. 17.24)
			2. Bubble-cap plates (Fig. 17.25)
			3. Valve plates (floating-cap plates) (Fig. 17.26)
			4. Valve plates (fixed valve plates) (Fig. 17.27)
			Liquid flow pattern
		17.12.1 Selection of plate type
		17.12.2 Plate construction
			Sectional construction
			Stacked plates (cartridge plates)
			Downcomers
			Side stream and feed points
			Structural design
	17.13 Plate hydraulic design
		Outline placeholder
			Operating range
		17.13.1 Plate design procedure
			Procedure
		17.13.2 Plate areas
		17.13.3 Diameter
		17.13.4 Liquid–flow arrangement
		17.13.5 Entrainment
		17.13.6 Weep point
		17.13.7 Weir liquid crest
		17.13.8 Weir dimensions
			Weir height
			Inlet weirs
			Weir length
		17.13.9 Perforated area
		17.13.10 Hole size
		17.13.11 Hole pitch
		17.13.12 Hydraulic gradient
		17.13.13 Liquid throw
		17.13.14 Plate pressure drop
			Dry plate drop
			Residual head
			Total drop
		17.13.15 Downcomer design (backup)
			Froth height
			Downcomer residence time
	17.14 Packed columns
		Outline placeholder
			Choice of plates or packing
			Packed-column design procedures
		17.14.1 Types of packing
			Random packing
			Packing size
			Structured packing
		17.14.2 Packed-bed height
			Distillation
			Absorption
			Stripping
		17.14.3 Prediction of the height of a transfer unit
			Cornell’s method
			Onda’s method
		17.14.4 Column diameter (capacity)
		17.14.5 Column internals
			Packing support
			Liquid distributors
			Liquid redistributors
			Hold-down plates
			Installing packing
			Liquid hold-up
		17.14.6 Wetting rates
	17.15 Column auxiliaries
	17.16 Solvent extraction (liquid–liquid extraction)
		Outline placeholder
			Solvent selection
		17.16.1 Extraction equipment
		17.16.2 Extractor design
			Number of stages
			Equilibrium data
			Number of stages
			Procedure
			Construction
			Immiscible solvents
		17.16.3 Extraction columns
			Flooding
		17.16.4 Supercritical fluid extraction
	17.17 Capital cost of separation columns
	17.18 References
	17 . Nomenclature
	17 . Problems
18. Specification and design of solids-handling equipment
	18.1 Introduction
	18.2 Properties of granular materials
		18.2.1 Properties of solid particles
			Particle size and shape
			Density and porosity
			Particle strength and hardness
			Particle chemical properties
		18.2.2 Bulk and flow properties of particulate materials
			Particle size distribution
			Voidage and bulk density
			Cohesion
			Flow properties
			Fluidization
	18.3 Storage and transport of solids
		18.3.1 Storage of bulk solids
		18.3.2 Discharge from bins and hoppers
			Flow patterns in bins and hoppers
			Flow of solids from an unregulated orifice
			Volumetric and gravimetric feeders
		18.3.3 Packaging and storage of solid products
		18.3.4 Conveying of solids
			Belt conveyors
			Screw conveyors
			Pneumatic and hydraulic conveying
			Pipe conveyors
			Bucket elevators
		18.3.5 Pressurization of solid feeds
	18.4 Separation and mixing of solids
		18.4.1 Screening (sieving)
		18.4.2 Liquid–solid cyclones
		18.4.3 Hydroseparators and sizers (classifiers)
		18.4.4 Hydraulic jigs
		18.4.5 Tables
		18.4.6 Classifying centrifuges
		18.4.7 Dense-medium separators (sink and float processes)
		18.4.8 Flotation separators (froth-flotation)
		18.4.9 Magnetic separators
		18.4.10 Electrostatic separators
		18.4.11 Solids blending and mixing
			Tumbling drums
			Internally agitated mixers
			Fluidized mixers
			Static mixers
	18.5 Gas–solids separations (gas cleaning)
		18.5.1 Gravity settlers (settling chambers)
		18.5.2 Impingement separators
		18.5.3 Centrifugal separators (cyclones)
			Cyclone design
			Pressure drop
			General design procedure
		18.5.4 Filters
			Air filters
		18.5.5 Wet scrubbers (washing)
		18.5.6 Electrostatic precipitators
	18.6 Separation of solids from liquids
		18.6.1 Thickeners and clarifiers
		18.6.2 Filtration
			Nutsche (gravity and vacuum operation)
			Plate and frame press (pressure operation) (Fig. 18.42)
			Leaf filters (pressure and vacuum operation)
			Rotary drum filters (usually vacuum operation) (Fig. 18.43)
			Disc filters (pressure and vacuum operation)
			Belt filters (vacuum operation) (Fig. 18.44)
			Horizontal pan filters (vacuum operation) (Fig. 18.45)
			Centrifugal filters
			Cross-flow filters
		18.6.3 Centrifuges
			Sedimentation centrifuges
				1 Tubular bowl (Fig. 18.49)
				2 Disc bowl (Fig. 18.50)
				3 Scroll discharge
				4 Solid bowl batch centrifuge
			Sigma theory for sedimentation centrifuges
			Filtration centrifuges (centrifugal filters)
		18.6.4 Hydrocyclones (liquid cyclones)
		8.6.5 Pressing (expression)
	18.7 Separation of liquids from solids (drying)
		18.7.1 Theory of drying
		18.7.2 Selection and design of dryers
			Tray dryers (Fig. 18.59)
			Conveyor dryers (continuous circulation band dryers) (Fig. 18.60)
			Rotary dryer (Fig. 18.61)
			Fluidized-bed dryers (Fig. 18.62)
			Pneumatic dryers (Fig. 18.63)
			Spray dryers (Fig. 18.64)
			Rotary drum dryers (Fig. 18.65)
		18.7.3 Process design and safety considerations
	18.8 Solids formation, shaping, and size enlargement processes
		18.8.1 Mechanisms of agglomeration
		18.8.2 Shaping, forming, and size enlargement processes
			Tablet presses and roll presses
			Extrusion
			Molding
			Granulation
			Spray drying and prilling
			Crystallization
		18.8.3 Postforming processes
	18.9 Particle size reduction (comminution)
		18.9.1 Crushing and grinding theory
		18.9.2 Wet and dry grinding
		18.9.3 Crushing and grinding (comminution) equipment
		18.9.4 Grinding cellular material
		18.9.5 Process design and safety considerations in crushing and grinding
	18.10 Heat transfer to flowing solid particles
	18.11 Hazards of solids processing
		18.11.1 Health impacts of dust inhalation
		18.11.2 Dust explosions
	18.12 References
	American standards
	18 . Nomenclature
	18 . Problems
19. Heat transfer equipment
	19.1 Introduction
	19.2 Basic design procedure and theory
		19.2.1 Heat exchanger analysis: The effectiveness–NTU method
	19.3 Overall heat transfer coefficient
	19.4 Fouling factors (dirt factors)
	19.5 Shell and tube exchangers: Construction details
		Outline placeholder
			Exchanger types
			Nomenclature
		19.5.1 Heat exchanger standards and codes
		19.5.2 Tubes
			Dimensions
			Tube arrangements
			Tube-side passes
		19.5.3 Shells
			Minimum shell thickness (mm)
		19.5.4 Tubesheet layout (tube count)
		19.5.5 Shell types (passes)
		19.5.6 Shell and tube designation
		19.5.7 Baffles
		19.5.8 Support plates and tie rods
		19.5.9 Tubesheets (plates)
		19.5.10 Shell and header nozzles (branches)
		19.5.11 Flow-induced tube vibrations
	19.6 Mean temperature difference (temperature driving force)
	19.7 Shell and tube exchangers: General design considerations
		19.7.1 Fluid allocation: Shell or tubes
		19.7.2 Shell and tube fluid velocities
			Liquids
			Vapors
		19.7.3 Stream temperatures
		19.7.4 Pressure drop
			Liquids
			Gas and vapors
		19.7.5 Fluid physical properties
	19.8 Tube-side heat transfer coefficient and pressure drop (single phase)
		19.8.1 Heat transfer
			Turbulent flow
			Hydraulic mean diameter
			Laminar flow
			Transition region
			Heat transfer factor, jh
			Viscosity correction factor
			Coefficients for water
		19.8.2 Tube-side pressure drop
	19.9 Shell-side heat transfer and pressure drop (single phase)
		19.9.1 Flow pattern
		19.9.2 Design methods
		19.9.3 Kern’s method
			Procedure
			Shell nozzle-pressure drop
		19.9.4 Commercial software for heat exchanger design
	19.10 Condensers
		19.10.1 Heat transfer fundamentals
			Physical properties
		19.10.2 Condensation outside horizontal tubes
		19.10.3 Condensation inside and outside vertical tubes
			Flooding in vertical tubes
		19.10.4 Condensation inside horizontal tubes
		19.10.5 Condensation of steam
		19.10.6 Mean temperature difference
		19.10.7 Desuperheating and subcooling
			Desuperheating
			Subcooling of condensate
		19.10.8 Condensation of mixtures
			Temperature profile
			Estimation of heat transfer coefficients
		19.10.9 Pressure drop in condensers
	19.11 Reboilers and vaporizers
		Outline placeholder
			Choice of type
		19.11.1 Boiling heat transfer fundamentals
			Estimation of boiling heat transfer coefficients
		19.11.2 Pool boiling
			Critical heat flux
			Film boiling
		19.11.3 Convective boiling
			Chen’s method
		19.11.4 Design of forced-circulation reboilers
		19.11.5 Design of thermosiphon reboilers
			Limitations on the use of Frank and Prickett’s method
			Approximate design method for mixtures
			Procedure
			Maximum heat flux
			General design considerations
		19.11.6 Design of kettle reboilers
			General design considerations
			Mean temperature differences
			Mixtures
	19.12 Plate heat exchangers
		19.12.1 Gasketed plate heat exchangers
			Selection
			Plate heat exchanger design
			Flow arrangements
			Estimation of the temperature correction factor
			Heat transfer coefficient
			Pressure drop
		19.12.2 Welded plate exchangers
		19.12.3 Plate-fin exchangers
		19.12.4 Spiral heat exchangers
	19.13 Direct-contact heat exchangers
	19.14 Finned tubes
		Outline placeholder
			Low fin tubes
	19.15 Double-pipe heat exchangers
	19.16 Air-cooled exchangers
		19.16.1 Air coolers: Construction details
		19.16.2 Heat transfer in air coolers
		19.16.3 Air cooler design
		19.16.4 Air cooler operation and control
	19.17 Fired heaters (furnaces and boilers)
		19.17.1 Basic construction
		19.17.2 Design of fired heaters
		19.17.3 Heat transfer in fired heaters
			Radiant section
			Convection section
		19.17.4 Pressure drop
		19.17.5 Process-side heat transfer and pressure drop
		19.17.6 Stack design
		19.17.7 Thermal efficiency
		19.17.8 Fired heater emissions
	19.18 Heat transfer to vessels
		19.18.1 Jacketed vessels
			Conventional jackets
			Half-pipe jackets
			Dimpled jackets
			Jacket selection
			Jacket heat transfer and pressure drop
		19.18.2 Internal coils
			Coil heat transfer and pressure drop
		19.18.3 Agitated vessels
	19.19 Capital cost of heat transfer equipment
	19.20 References
	American standards
	19.21 Nomenclature
	19.22 Problems
20. Transport and storage of fluids
	20.1 Introduction
	20.2 Storage of fluids
		20.2.1 Storage of gases
		20.2.2 Storage of liquids
	20.3 Transport of gases and liquids
		20.3.1 Gases
			Vacuum production
		20.3.2 Liquids
	20.4 Pressure drop in pipelines
		20.4.1 Pressure drop in pipes
			Non-Newtonian fluids
			Gases
			Two-phase mixtures
		20.4.2 Pressure drop in pipe fittings
	20.5 Valves
	20.6 Compression and expansion of gases
		20.6.1 Compression of gases
		20.6.2 Mollier diagrams
		20.6.3 Polytropic compression and expansion
		20.6.4 Multistage compressors
		20.6.5 Compressor performance curves
	20.7 Pumping of liquids
		20.7.1 Centrifugal pump design
		20.7.2 Power requirements for pumping liquids
			Pump shaft power
		20.7.3 Characteristic curves for centrifugal pumps
		20.7.4 Cavitation and net positive suction head (NPSH)
		20.7.5 System curve (operating line)
		20.7.6 Pump and other shaft seals
			Packed glands
			Mechanical seals
			The basic mechanical seal
			Double seals
			Seal-less pumps (canned pumps)
	20.8 Selection of drivers for rotating equipment
		20.8.1 Electric motors as drivers
		20.8.2 Steam turbines as drivers
	20.9 Mechanical design of piping systems
		20.9.1 Piping system design codes
		20.9.2 Wall thickness: Pipe schedule
		20.9.3 Pipe supports
		20.9.4 Pipe fittings
		20.9.5 Pipe stressing
		20.9.6 Layout and design
	20.10 Pipe size selection
		Outline placeholder
			Economic pipe diameter
	20.11 Sizing of control valves
	20.12 References
	American standards
	International standards
	20.13 Nomenclature
	20.14 Problems
Appendices
	Appendix A: Graphical symbols for piping systems and plant
	Appendix B: Corrosion charts
	Appendix C: Physical property data bank
	Appendix D: Conversion factors
	Appendix E: Design projects (shorter problem statements)
	Appendix F: Design projects (longer problem statements)
	Appendix G: Equipment specification (data) sheets
	Appendix H: Typical shell and tube heat exchanger tube-sheet layouts
	Appendix I: Material safety data sheet
Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z




نظرات کاربران