ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Chemical, Gas, and Biosensors for Internet of Things and Related Applications

دانلود کتاب حسگرهای شیمیایی، گازی و زیستی برای اینترنت اشیا و کاربردهای مرتبط

Chemical, Gas, and Biosensors for Internet of Things and Related Applications

مشخصات کتاب

Chemical, Gas, and Biosensors for Internet of Things and Related Applications

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128154098, 9780128154090 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 406
[408] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Chemical, Gas, and Biosensors for Internet of Things and Related Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب حسگرهای شیمیایی، گازی و زیستی برای اینترنت اشیا و کاربردهای مرتبط نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب حسگرهای شیمیایی، گازی و زیستی برای اینترنت اشیا و کاربردهای مرتبط



حسگرهای شیمیایی، گاز و زیستی برای اینترنت اشیا و برنامه‌های مرتبط زمینه‌های حسگرها و شیمی تحلیلی، دستگاه‌ها و ماشین‌ها، و شبکه و فناوری اطلاعات را گرد هم می‌آورد. این منبع کامل محققان را قادر می سازد تا به طور مؤثر برای پیشبرد این حوزه مطالعاتی بین رشته ای که به سرعت در حال گسترش است، همکاری کنند. از آنجایی که پیشرفت‌های نوآورانه در اینترنت اشیا (IoT) همچنان فرصت‌های جدیدی را برای بهبود کیفیت زندگی باز می‌کند، فناوری حسگر باید سرعت خود را حفظ کند. Mitsubayashi، Niwa و Ueno ذهن های برتر در زمینه های مربوطه خود را گرد هم آورده اند تا آخرین اطلاعات را در مورد کاربردهای متعدد این فناوری ارائه دهند.

موضوعات پوشش داده شده عبارتند از: سیستم های کمک به زندگی، نظارت بر شبکه با حسگرهای محیطی قابل حمل، نظارت بی سیم سلامت دام، نظارت بر سلامت نقطه مراقبت، الکترونیک ارگانیک و باتری های زیستی، و موارد دیگر.


توضیحاتی درمورد کتاب به خارجی

Chemical, Gas, and Biosensors for the Internet of Things and Related Applications brings together the fields of sensors and analytical chemistry, devices and machines, and network and information technology. This thorough resource enables researchers to effectively collaborate to advance this rapidly expanding, interdisciplinary area of study. As innovative developments in the Internet of Things (IoT) continue to open new possibilities for quality of life improvement, sensor technology must keep pace, Drs. Mitsubayashi, Niwa and Ueno have brought together the top minds in their respective fields to provide the latest information on the numerous uses of this technology.

Topics covered include life-assist systems, network monitoring with portable environmental sensors, wireless livestock health monitoring, point-of-care health monitoring, organic electronics and bio-batteries, and more.



فهرست مطالب

Front Cover
Chemical, Gas, and Biosensors for Internet of Things and Related Applications
Copyright Page
Contents
List of Contributors
Preface
I. Sensors and Devices for Internet of Things Applications
	1 Portable urine glucose sensor
		1.1 Introduction
		1.2 Significance of urine glucose measurement
		1.3 Operating principle of urine glucose sensor and laminated structure
			1.3.1 Principle of operation
			1.3.2 Laminated structure of urine glucose sensor
		1.4 Development of portable urine glucose meter
			1.4.1 Composition of urine glucose meter
			1.4.2 Performance evaluation of urine glucose meter
		1.5 Clinical application of urine glucose meter
			1.5.1 Relationship between the amount of boiled rice and urine glucose concentration in impaired glucose tolerance
			1.5.2 Results of urine glucose monitoring on impaired glucose tolerance case
			1.5.3 Results of a case of self-monitoring of urine glucose in diabetes
		1.6 Conclusions
		References
	2 Design, application, and integration of paper-based sensors with the Internet of Things
		2.1 Introduction
		2.2 Bioapplications of paper-based analytical devices
		2.3 Environmental analysis of paper-based analytical devices
		2.4 Integration with smartphone devices
		2.5 Conclusion
		Author disclosure statement
		References
	3 Membrane-type Surface stress Sensor (MSS) for artificial olfactory system
		3.1 Introduction
		3.2 Membrane-type Surface stress Sensor (MSS)
		3.3 Receptor materials
		3.4 Machine learning
		3.5 Applications
		3.6 Internet of Things and MSS Alliance/Forum
		3.7 Conclusion
		References
	4 Sensing technology based on olfactory receptors
		4.1 Olfactory mechanisms in biological systems
			4.1.1 Olfactory mechanisms in vertebrates
				4.1.1.1 Anatomy of olfactory organs in mammals
				4.1.1.2 Odorant detection and signal transduction
				4.1.1.3 Odorant receptors and odor coding in mammals
			4.1.2 Olfactory mechanisms in insects
				4.1.2.1 Anatomy of olfactory organs in insects
				4.1.2.2 Odorant detection by olfactory sensilla
				4.1.2.3 Odorant receptors and signal transduction
				4.1.2.4 Odor coding by olfactory receptor neurons
		4.2 Biosensing technologies based on odorant receptors
			4.2.1 Mammalian odorant receptors
				4.2.1.1 Cell-based expression systems
					4.2.1.1.1 Bacterial cells
					4.2.1.1.2 Yeast cells
					4.2.1.1.3 Mammalian cultured cells
				4.2.1.2 Other (noncell-based expression system) applications
			4.2.2 Insect odorant receptors
				4.2.2.1 Cell-based expression systems
				4.2.2.2 Other (noncell expression system) applications
		4.3 Summary
		References
	5 Advanced surface modification technologies for biosensors
		5.1 Biosensors and biointerfaces
		5.2 Binding platforms based on self-assembled monolayers
			5.2.1 Organosulfur derivatives
			5.2.2 Organosilicon derivatives
			5.2.3 Catechol derivatives
		5.3 Binding matrix based on polymeric hydrogels
			5.3.1 Physicochemical sensing mechanisms
			5.3.2 Biochemical sensing mechanisms
		5.4 Coupling chemistries for immobilization of biorecognition elements
			5.4.1 Physical immobilization
			5.4.2 Amine chemistry
			5.4.3 Thiol chemistry
			5.4.4 Carboxyl chemistry
			5.4.5 Epoxy chemistry
			5.4.6 Click chemistry
			5.4.7 α-Oxo semicarbazone chemistry
			5.4.8 Bioaffinity conjugation
		5.5 Antifouling materials
			5.5.1 Poly(ethylene glycol) antifouling materials
			5.5.2 Zwitterionic antifouling materials
		5.6 Outlook
		References
	6 Development of portable immunoassay device for future Internet of Things applications
		6.1 Introduction
		6.2 Portable immunoassay system based on surface plasmon resonance for urinary immunoassay
		6.3 One-chip immunosensing fabricated with nanoimprinting technique
			6.3.1 Fabrication of local plasmon resonance devices with various processes
			6.3.2 Surface plasmon resonance biosensors fabricated by nanoimprint technique
		6.4 Microfluidic biosensor with one-step optical detection
			6.4.1 Mechanism of graphene aptasensor
			6.4.2 Multichannel linear array for multiple protein detection
			6.4.3 Molecular design for enhanced sensitivity
		6.5 Future trend
		References
	7 Sensitive and reusable surface acoustic wave immunosensor for monitoring of airborne mite allergens
		7.1 Introduction
		7.2 Surface acoustic wave immunosensor for repeated measurement of house dust mite allergens
		7.3 Sensor characteristics and semicontinuous measurement of Der f 1
		7.4 Sensitivity improvement via gold nanoparticles
		7.5 Conclusion
		References
	8 Aptameric sensors utilizing its property as DNA
		8.1 Introduction
		8.2 Aptamer-immobilized electrochemical sensor
		8.3 Detection using complementary chain formation
			8.3.1 Strand displacement assay
			8.3.2 Bound/Free separation using complementary chain formation
		8.4 Aptamer sensor combined with enzymes
		8.5 Utilizing structural change of aptamers to biosensor
		8.6 Utilizing structural change of aptamers to biosensor
		8.7 Development of highly sensitive sensors by amplifying DNA strands
		8.8 Colorimetric detection using aptameric sensor and smart devices
		8.9 Conclusion
		References
	9 Electrochemical sensing techniques using carbon electrodes prepared by electrolysis toward environmental Internet of Thin...
		9.1 Introduction
			9.1.1 Electrochemical monitoring support Internet of Things services
			9.1.2 Carbon electrode surface activation
		9.2 Chemical sensors using electrochemical activated carbon electrodes
			9.2.1 Electrochemical activated techniques for aminated electrode preparation
			9.2.2 Electrochemical activated techniques for electrodeposited platinum particles on glassy carbon electrode modified with...
		9.3 Electrocatalytic activity and analytical performance
		9.4 Conclusion and future perspectives
		Acknowledgments
		References
	10 Chemical sensors for environmental pollutant determination
		10.1 Introduction
		10.2 Definition of a chemical sensor
		10.3 Classification of chemical sensors
			10.3.1 Electrochemical sensors
				10.3.1.1 Voltammetric sensors
				10.3.1.2 Amperometric sensors
				10.3.1.3 Electrochemical impedance spectroscopy sensors
				10.3.1.4 Potentiometric sensors
			10.3.2 Optical sensors
				10.3.2.1 Fluorescence sensors
				10.3.2.2 Surface plasmon resonance sensors
				10.3.2.3 Infrared and Raman spectroscopy-based sensors
				10.3.2.4 Colorimetric sensors
		10.4 Conclusion
		Acknowledgments
		References
II. Flexible, Wearable, and Mobile Sensors and Related Technologies
	11 Smart clothing with wearable bioelectrodes “hitoe”
		11.1 Introduction
		11.2 Functional material “hitoe”
			11.2.1 Composite material of a conductive polymer and fibers
			11.2.2 The development of hitoe smart clothing
		11.3 Application examples
			11.3.1 Medicine/rehabilitation
			11.3.2 Sports
				11.3.2.1 Heart rate measurement
				11.3.2.2 Surface electromyography measurements
			11.3.3 Worker health/safety management
		11.4 State estimation based on heart rate variability and other data
			11.4.1 Estimating posture information from accelerometer data
			11.4.2 Estimating respiratory activity from electrocardiogram data
			11.4.3 Estimating sleep states
		11.5 Conclusion
		References
	12 Cavitas bio/chemical sensors for Internet of Things in healthcare
		12.1 Introduction
		12.2 Soft contact lens type bio/chemical sensors
			12.2.1 Tear fluid in conjunctiva sac
			12.2.2 Flexible conductivity sensor for tear flow function
			12.2.3 Soft contact lens type biosensors using biocompatible polymers
			12.2.4 Transcutaneous gas sensor at eyelid conjunctiva
		12.3 Mouthguard type biosensor for saliva biomonitoring
			12.3.1 Salivary fluids in oral cavity
			12.3.2 Wireless mouthguard sensor for salivary glucose
		12.4 Conclusion
		Acknowledgments
		References
	13 Point of care testing apparatus for immunosensing
		13.1 Introduction
		13.2 Immunochromatography assay
		13.3 Immunochromatography assay for infectious diseases
		13.4 Reliability of the examination kits
		13.5 Signal amplification
		13.6 Quantitative ICA by electrochemical detection systems
		13.7 Rapid and Quantitative ICA based on dielectrophoresis
		13.8 Conclusion
		References
	14 IoT sensors for smart livestock management
		14.1 Introduction
		14.2 Measurement site and fixing method
		14.3 Size and weight
		14.4 Power consumption
		14.5 Frequency bands of radio wave
		14.6 Applications of wearable biosensors for livestock
			14.6.1 Chickens
			14.6.2 Cattle
				14.6.2.1 Automated milking system
				14.6.2.2 Importance of wearable sensors
				14.6.2.3 Pedometers
				14.6.2.4 Ruminal sensors
				14.6.2.5 Vaginal sensors
				14.6.2.6 Implantable sensors
				14.6.2.7 Wireless thermometers attached to skin surface
		14.7 Conclusion
		References
	15 Compact disc-type biosensor devices and their applications
		15.1 Introduction
		15.2 CD-shaped microfluidic devices for cell isolation and single cell PCR
			15.2.1 Single cell isolation
			15.2.2 Single cell PCR of S. enterica
			15.2.3 Discrimination of microbes
			15.2.4 Single cell RT-PCR for Jurkat cells
		15.3 CD-shaped microfluidic device for cell staining
		15.4 CD-shaped microfluidic device for ELISA
			15.4.1 Detection of bioactive chemicals based on ELISA
			15.4.2 Multiple ELISA for diagnosis of diabetes
		15.5 Conclusion
		Acknowledgment
		References
	16 A CMOS compatible miniature gas sensing system
		16.1 Introduction
		16.2 Complementary metal–oxide–semiconductor-compatible gas sensor
			16.2.1 Materials and fabrication
			16.2.2 Gas experimental results
		16.3 Nose-on-a-chip
			16.3.1 System block diagram
			16.3.2 Adaptive interface circuitry
			16.3.3 SAR ADC
			16.3.4 CRBM kernel
			16.3.5 Memory
			16.3.6 RISC core
			16.3.7 Chip measurement results
		16.4 Miniature electronic nose system prototype
		16.5 Application example
		16.6 Conclusion
		Acknowledgments
		References
	17 Visualization of odor space and quality
		17.1 Introduction
		17.2 Fluorescence imaging for odor visualization
			17.2.1 Principle and system of fluorescence imaging
			17.2.2 Fabrication of the visualization system
			17.2.3 Visualization based on single fluorescent probe
			17.2.4 Visualization based on multispectral fluorescence imaging
		17.3 Localized surface plasmon resonance sensor for odorant visualization
		17.4 Collecting spatial odor information from on-ground odor sources with a robot system
		17.5 Visual odor representation of a volatile molecular based on chemical property by network diagram
		References
	18 Bio-sniffer and sniff-cam
		18.1 Introduction: breath and skin gas analysis
			18.1.1 Construction of bio-sniffer
			18.1.2 Acetone bio-sniffer
			18.1.3 Isopropanol bio-sniffer
			18.1.4 Sniff-cam system with chemiluminescence
			18.1.5 Biofluorometric “sniff-cam”
		18.2 Summary
		Acknowledgments
		References
III. Information and Network Technologies for Sensor-Internet of Things Applications
	19 Flexible and printed biosensors based on organic TFT devices
		19.1 Introduction
			19.1.1 Biosensors for the Internet of Things society
			19.1.2 Printed organic biosensors for human healthcare applications
		19.2 Organic thin-film transistor-based biosensors
			19.2.1 Printing techniques for device fabrication
			19.2.2 Organic thin-film transistor-based biosensor principles
			19.2.3 Enzyme-based biosensors
			19.2.4 Immunosensors
			19.2.5 Ion-selective sensors
			19.2.6 Wearable sensors using microfluidics
		19.3 Sensor systems using flexible hybrid electronics
		19.4 Conclusion
		Acknowledgments
		References
	20 Self-monitoring of fat metabolism using portable/wearable acetone analyzers
		20.1 Introduction
		20.2 Portable breath acetone analyzer
			20.2.1 Prototyped analyzer
			20.2.2 Applicability to diet support
			20.2.3 Applicability to diabetes care at home
			20.2.4 Applicability to “Health Kiosk”
		20.3 Wearable skin acetone analyzer
			20.3.1 Skin acetone concentrator
			20.3.2 Prototyped analyzer
			20.3.3 Assumed usage scenario
		20.4 Conclusions
		References
	21 Air pollution monitoring network of PM2.5, NO2 and radiation of 137Cs
		21.1 Introduction
		21.2 PM2.5 monitoring system
			21.2.1 Introduction
		21.3 Monitoring device (small PM2.5 sensor)
		21.4 Mobile sensing of outside PM2.5
		21.5 Measurement at several points
		21.6 NO2 monitoring system
			21.6.1 Introduction
		21.7 NO2 monitoring device
		21.8 Mobile sensing of outside NO2
		21.9 Radiation of 137Cs monitoring system
			21.9.1 Introduction
		21.10 Radiation of 137Cs monitoring device
		21.11 Field test in Fukushima and other areas
		Acknowledgment
		References
	22 Wireless sensor network with various sensors
		22.1 Sensing system with network
		22.2 Wireless sensor network as a sensing system
		22.3 Wireless sensing system for health condition monitoring with a wearable and flexible sensor
			22.3.1 Wearable and flexible electrode with a conductive fiber
			22.3.2 Wireless data-transmitting module with many sensors
		References
	23 Data analysis targeting healthcare-support applications using Internet-of-Things sensors
		23.1 Motivation for data analysis
		23.2 Procedure of data analysis
			23.2.1 Analysis design
				23.2.1.1 Fundamental data format on computer
				23.2.1.2 Example of data format: cluster
				23.2.1.3 Example of data format: label
				23.2.1.4 Example of data format: value
				23.2.1.5 “Tips” in analysis design
			23.2.2 Data collection
			23.2.3 Data cleansing
			23.2.4 Feature extraction
				23.2.4.1 Type of data
				23.2.4.2 Example of features
				23.2.4.3 Missing data handling
				23.2.4.4 Tips for feature extraction
			23.2.5 Learning
			23.2.6 Evaluation
				23.2.6.1 Clustering
				23.2.6.2 Classification
				23.2.6.3 Regression
				23.2.6.4 For further evaluation
		23.3 Example of health data analysis
		23.4 Conclusion
		References
Summary and future issues
Index
Back Cover




نظرات کاربران