ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Cell biology

دانلود کتاب زیست شناسی سلولی

Cell biology

مشخصات کتاب

Cell biology

ویرایش: 8th ed., Global edition. 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781119454175, 1119454174 
ناشر:  
سال نشر: 2018 
تعداد صفحات: 880 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 190 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Cell biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زیست شناسی سلولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright
About the Authors
Preface to the Global Edition
Contents
1 Introduction to Cell Biology
	1.1 The Discovery of Cells
		Microscopy
		Cell Theory
	1.2 Basic Properties of Cells
		Cells Are Highly Complex and Organized
		Cells Possess a Genetic Program and the Means to Use It
		Cells Are Capable of Producing More of Themselves
		Cells Acquire and Utilize Energy
		Cells Carry Out a Variety of Chemical Reactions
		Cells Engage in Mechanical Activities
		Cells are Able to Respond to Stimuli
		Cells Are Capable of Self-Regulation
		Cells Evolve
	1.3 Two Fundamentally Different Classes of Cells
	1.4 Types of Prokaryotic Cells
		Domain Archaea and Domain Bacteria
		Prokaryotic Diversity
	1.5 Types of Eukaryotic Cells
		Cell Differentiation
		Model Organisms
	1.6 The Sizes of Cells and Their Components
	1.7 Viruses
		Viroids
	The Human Perspective
		The Prospect of Cell Replacement Therapy
	Experimental Pathways
		The Origin of Eukaryotic Cells
2 The Structure and Functions of Biological Molecules
	2.1 Covalent Bonds
		Polar and Nonpolar Molecules
		Ionization
	2.2 Noncovalent Bonds
		Ionic Bonds: Attractions between Charged Atoms
		Hydrogen Bonds
		Hydrophobic Interactions and van der Waals Forces
		The Life-Supporting Properties of Water
	2.3 Acids, Bases, and Buffers
	2.4 The Nature of Biological Molecules
		Functional Groups
		A Classification of Biological Molecules by Function
	2.5 Carbohydrates
		The Structure of Simple Sugars
		Stereoisomerism
		Linking Sugars Together
		Polysaccharides
	2.6 Lipids
		Fats
		Steroids
		Phospholipids
	2.7 Building Blocks of Proteins
		The Structures of Amino Acids
		The Properties of the Side Chains
	2.8 Primary and Secondary Structures of Proteins
		Primary Structure
		Secondary Structure
	2.9 Tertiary Structure of Proteins
		Myoglobin: The First Globular Protein Whose Tertiary Structure Was Determined
		Tertiary Structure May Reveal Unexpected Similarities between Proteins
		Protein Domains
		Dynamic Changes within Proteins
	2.10 Quaternary Structure of Proteins
		The Structure of Hemoglobin
		Protein–Protein Interactions
	2.11 Protein Folding
		Dynamics of Protein Folding
		The Role of Molecular Chaperones
	2.12 Proteomics and Interactomics
		Proteomics
		Interactomics
	2.13 Protein Engineering
		Production of Novel Proteins
		Structure-Based Drug Design
	2.14 Protein Adaptation and Evolution
	2.15 Nucleic Acids
	2.16 The Formation of Complex Macromolecular Structures
		The Assembly of Tobacco Mosaic Virus Particles
		The Assembly of Ribosomal Subunits
	The Human Perspective
		I. Do Free Radicals Cause Aging?
		II. Protein Misfolding Can Have Deadly Consequences
	Experimental Pathways
		Chaperones—Helping Proteins Reach Their Proper Folded State
3 Bioenergetics, Enzymes, and Metabolism
	3.1 Bioenergetics
		The First Law of Thermodynamics
		The Second Law of Thermodynamics
	3.2 Free Energy
		Free‐Energy Changes in Chemical Reactions
		Free‐Energy Changes in Metabolic Reactions
	3.3 Coupling Endergonic and Exergonic Reactions
	3.4 Equilibrium versus Steady‐State Metabolism
	3.5 Enzymes as Biological Catalysts
		The Properties of Enzymes
		Overcoming the Activation Energy Barrier
		The Active Site
	3.6 Mechanisms of Enzyme Catalysis
		Substrate Orientation
		Changing Substrate Reactivity
		Inducing Strain in the Substrate
	3.7 Enzyme Kinetics
		The Michaelis-Menten Model of Enzyme Kinetics
		Enzyme Inhibitors
	3.8 Metabolism
		Oxidation and Reduction: A Matter of Electrons
		The Capture and Utilization of Energy
	3.9 Glycolysis and ATP Production
		ATP Production in Glycolysis
		Anaerobic Oxidation of Pyruvate: The Process of Fermentation
	3.10 Reducing Power
	3.11 Metabolic Regulation
		Altering Enzyme Activity by Covalent Modification
		Altering Enzyme Activity by Allosteric Modulation
	3.12 Separating Catabolic and Anabolic Pathways
	The Human Perspective
		I. The Growing Problem of Antibiotic Resistance
		II. Caloric Restriction and Longevity
4 Genes, Chromosomes, and Genomes
	4.1 The Concept of a Gene as a Unit of Inheritance
	4.2 The Discovery of Chromosomes
	4.3 Chromosomes: The Physical Carriers of the Genes
		The Chromosome as a Linkage Group
	4.4 Genetic Analysis in Drosophila
		Crossing Over and Recombination
		Mutagenesis and Giant Chromosomes
	4.5 The Structure of DNA
		The Watson-Crick Proposal
		The Importance of the Watson‐Crick Proposal
	4.6 DNA Supercoiling
	4.7 The Structure of the Genome
		DNA Denaturation
		DNA Renaturation
	4.8 The Stability of the Genome
		Whole-Genome Duplication (Polyploidization)
		Duplication and Modification of DNA Sequences
		Evolution of Globin Genes
	4.9 “Jumping Genes” and the Dynamic Nature of the Genome
		Transposons
		The Role of Mobile Genetic Elements in Genome Evolution
	4.10 Sequencing Genomes: The Footprints of Biological Evolution
	4.11 Comparative Genomics: “If It’s Conserved, It Must Be Important”
	4.12 The Genetic Basis of “Being Human”
	4.13 Genetic Variation within the Human Species Population
		DNA Sequence Variation
		Structural Variation
		Copy Number Variation
	The Human Perspective
		I. Diseases That Result from Expansion of Trinucleotide Repeats
		II. Application of Genomic Analyses to Medicine
	Experimental Pathways
		The Chemical Nature of the Gene
5 The Path to Gene Expression
	5.1 The Relationship between Genes, Proteins, and RNAs
		Evidence That DNA Is the Genetic Material
		An Overview of the Flow of Information through the Cell
	5.2 The Role of RNA Polymerases in Transcription
	5.3 An Overview of Transcription in Both Prokaryotic and Eukaryotic Cells
		Transcription in Bacteria
		Transcription and RNA Processing in Eukaryotic Cells
	5.4 Synthesis and Processing of Eukaryotic Ribosomal and Transfer RNAs
		Synthesis and Processing of the rRNA Precursor
		The Role of snoRNAs in the Processing of Pre‐rRNA
		Synthesis and Processing of the 5S rRNA
		Transfer RNAs
	5.5 Synthesis and Structure of Eukaryotic Messenger RNAs
		The Formation of Heterogeneous Nuclear RNA (hnRNA)
		The Machinery for mRNA Transcription
		The Structure of mRNAs
	5.6 Split Genes: An Unexpected Finding
	5.7 The Processing of Eukaryotic Messenger RNAs
		5′ Caps and 3′ Poly(A) Tails
		RNA Splicing: Removal of Introns from a Pre‐RNA
	5.8 Evolutionary Implications of Split Genes and RNA Splicing
	5.9 Creating New Ribozymes in the Laboratory
	5.10 Small Regulatory RNAs and RNA Silencing Pathway
	5.11 Small RNAs: miRNAs and piRNAs
		miRNAs: A Class of Small RNAs that Regulate Gene Expression
		piRNAs: A Class of Small RNAs that Function in Germ Cells
	5.12 CRISPR and other Noncoding RNAs
		CRISPR: Noncoding RNA in Bacteria
		Other Noncoding RNAs
	5.13 Encoding Genetic Information
		The Properties of the Genetic Code
		Identifying the Codons
	5.14 Decoding the Codons: The Role of Transfer RNAs
		The Structure of tRNAs
		tRNA Charging
	5.15 Translating Genetic Information: Initiation
		Initiation of Translation in Prokaryotes
		Initiation of Translation in Eukaryotes
		The Role of the Ribosome
	5.16 Translating Genetic Information: Elongation and Termination
		Elongation Step 1: Aminoacyl‐tRNA Selection
		Elongation Step 2: Peptide Bond Formation
		Elongation Step 3: Translocation
		Elongation Step 4: Releasing the Deacylated tRNA
		Termination
	5.17 mRNA Surveillance and Quality Control
	5.18 Polyribosomes
	The Human Perspective
		Clinical Applications of RNA Interference
	Experimental Pathways
		The Role of RNA as a Catalyst
6 Controlling Gene Expression
	6.1 Control of Gene Expression in Bacteria
		Organization of Bacterial Genomes
		The Bacterial Operon
		Riboswitches
	6.2 Control of Gene Expression in Eukaryotes: Structure and Function of the Cell Nucleus
		The Nuclear Pore Complex and Its Role in Nucleocytoplasmic Trafficking
		RNA Transport
	6.3 Chromosomes and Chromatin
		Nucleosomes: The Lowest Level of Chromosome Organization
		Higher Levels of Chromatin Structure
	6.4 Heterochromatin and Euchromatin
		X Chromosome Inactivation
		The Histone Code and Formation of Heterochromatin
	6.5 The Structure of a Mitotic Chromosome
		Telomeres
		Centromeres
	6.6 Epigenetics: There’s More to Inheritance than DNA
	6.7 The Nucleus as an Organized Organelle
	6.8 An Overview of Gene Regulation in Eukaryotes
	6.9 Transcriptional Control
		DNA Microarrays
		RNA Sequencing
	6.10 The Role of Transcription Factors in Regulating Gene Expression
		The Role of Transcription Factors in Determining a Cell’s Phenotype
	6.11 The Structure of Transcription Factors
		Transcription Factor Motifs
	6.12 DNA Sites Involved in Regulating Transcription
	6.13 The Glucocorticoid Receptor: An Example of Transcriptional Activation
	6.14 Transcriptional Activation: The Role of Enhancers, Promoters, and Coactivators
		Coactivators That Interact with the Basal Transcription Machinery
		Coactivators That Alter Chromatin Structure
	6.15 Transcriptional Activation from Paused Polymerases
	6.16 Transcriptional Repression
		DNA Methylation
		Genomic Imprinting
		Long Noncoding RNAs (lncRNAs) as Transcriptional Repressors
	6.17 RNA Processing Control
	6.18 Translational Control
		Initiation of Translation
		Cytoplasmic Localization of mRNAs
		The Control of mRNA Stability
	6.19 The Role of MicroRNAs in Translational Control
	6.20 Posttranslational Control: Determining Protein Stability
	The Human Perspective
		Chromosomal Aberrations and Human Disorders
7 DNA Replication and Repair
	7.1 DNA Replication
	7.2 DNA Replication in Bacterial Cells
		Replication Forks and Bidirectional Replication
		Unwinding the Duplex and Separating the Strands
		The Properties of DNA Polymerases
		Semidiscontinuous Replication
	7.3 The Machinery Operating at the Replication Fork
	7.4 The Structure and Functions of DNA Polymerases
		Exonuclease Activities of DNA Polymerases
		Ensuring High Fidelity during DNA Replication
	7.5 Replication in Viruses
	7.6 DNA Replication in Eukaryotic Cells
		Initiation of Replication in Eukaryotic Cells
		Restricting Replication to Once Per Cell Cycle
		The Eukaryotic Replication Fork
		Replication and Nuclear Structure
	7.7 Chromatin Structure and Replication
	7.8 DNA Repair
		Nucleotide Excision Repair
		Base Excision Repair
		Mismatch Repair
		Double‐Strand Breakage Repair
	7.9 Between Replication and Repair
	The Human Perspective
		Consequences of DNA Repair Deficiencies
8 Cellular Membrane
	8.1 Introduction to the Plasma Membrane
		An Overview of Membrane Functions
		A Brief History of Studies on Plasma Membrane Structure
	8.2 The Chemical Composition of Membranes
		Membrane Lipids
		The Nature and Importance of the Lipid Bilayer
		The Asymmetry of Membrane Lipids
	8.3 Membrane Carbohydrates
	8.4 The Structure and Functions of Membrane Proteins
		Integral Membrane Proteins
		Peripheral Membrane Proteins
		Lipid‐Anchored Membrane Proteins
	8.5 Studying the Structure and Properties of Integral Membrane Proteins
		Identifying Transmembrane Domains
		Experimental Approaches to Identifying Conformational Changes within an Integral Membrane Protein
	8.6 Membrane Lipids and Membrane Fluidity
		The Importance of Membrane Fluidity
		Maintaining Membrane Fluidity
		Lipid Rafts
	8.7 The Dynamic Nature of the Plasma Membrane
		The Diffusion of Membrane Proteins after Cell Fusion
		Restrictions on Protein and Lipid Mobility
	8.8 The Red Blood Cell: An Example of Plasma Membrane Structure
		Integral Proteins of the Erythrocyte Membrane
		The Erythrocyte Membrane Skeleton
	8.9 The Movement of Substances across Cell Membranes
		The Energetics of Solute Movement
		Formation of an Electrochemical Gradient
	8.10 Diffusion through the Lipid Bilayer
		Diffusion of Substances through Membranes
		The Diffusion of Water through Membranes
	8.11 The Diffusion of Ions through Membranes
	8.12 Facilitated Diffusion
	8.13 Active Transport
		Primary Active Transport: Coupling Transport to ATP Hydrolysis
		Other Primary Ion Transport Systems
		Using Light Energy to Actively Transport Ions
		Secondary Active Transport (or Cotransport): Coupling Transport to Existing Ion Gradients
	8.14 Membrane Potentials
		The Resting Potential
		The Action Potential
	8.15 Propagation of Action Potentials as an Impulse
	8.16 Neurotransmission: Jumping the Synaptic Cleft
		Actions of Drugs on Synapses
		Synaptic Plasticity
	The Human Perspective
		Defects in Ion Channels and Transporters as a Cause of Inherited Disease
	Experimental Pathways
		The Acetylcholine Receptor
9 Mitochondrion and Aerobic Respiration
	9.1 Mitochondrial Structure and Function
		Mitochondrial Membranes
		The Mitochondrial Matrix
	9.2 Oxidative Metabolism in the Mitochondrion
		The Tricarboxylic Acid (TCA) Cycle
		The Importance of Reduced Coenzymes in the Formation of ATP
	9.3 The Role of Mitochondria in the Formation of ATP
		Oxidation–Reduction Potentials
		Electron Transport
		Types of Electron Carriers
	9.4 Electron‐Transport Complexes
		Complex I (NADH dehydrogenase)
		Complex II (succinate dehydrogenase)
		Complex III (cytochrome bc1)
		Complex IV (cytochrome c oxidase)
	9.5 Translocation of Protons and the Establishment of a Proton‐Motive Force
	9.6 The Machinery for ATP Formation
		The Structure of ATP Synthase
	9.7 The Binding Change Mechanism of ATP Formation
		Components of the Binding Change Hypothesis
		Evidence to Support the Binding Change Mechanism and Rotary Catalysis
	9.8 Using the Proton Gradient
		The Role of the Fo Portion of ATP Synthase in ATP Synthesis
		Other Roles for the Proton‐Motive Force in Addition to ATP Synthesis
	9.9 Peroxisomes
	The Human Perspective
		I. The Role of Anaerobic and Aerobic Metabolism in Exercise
		II. Diseases that Result from Abnormal Mitochondrial or Peroxisomal Function
10 Chloroplast and Photosynthesis
	10.1 The Origin of Photosynthesis
	10.2 Chloroplast Structure and Function
	10.3 An Overview of Photosynthetic Metabolism
	10.4 The Absorption of Light
		Photosynthetic Pigments
	10.5 Photosynthetic Units and Reaction Centers
		Oxygen Formation: Coordinating the Action of Two Different Photosynthetic Systems
	10.6 The Operations of Photosystem II and Photosystem I
		PSII Operations: Obtaining Electrons by Splitting Water
		PSI Operations: The Production of NADPH
	10.7 An Overview of Photosynthetic Electron Transport
		Killing Weeds by Inhibiting Electron Transport
	10.8 Photophosphorylation
		Noncyclic Versus Cyclic Photophosphorylation
	10.9 Carbon Dioxide Fixation and the Carbohydrate Synthesis
		Carbohydrate Synthesis in C3 Plants
		Redox Control
		Photorespiration
		Peroxisomes and Photorespiration
	10.10 Carbohydrate Synthesis in C4 and CAM Plants
	The Human Perspective
		Global Warming and Carbon Sequestration
11 The Extracellular Matrix and Cell Interactions
	11.1 Overview of Extracellular Interactions
	11.2 The Extracellular Space
		The Extracellular Matrix
	11.3 Components of the Extracellular Matrix
		Collagen
		Proteoglycans
		Fibronectin
		Laminin
	11.4 Dynamic Properties of the Extracellular Matrix
	11.5 Interactions of Cells with Extracellular Materials
		Integrins
	11.6 Anchoring Cells to Their Substratum
		Focal Adhesions
		Hemidesmosomes
	11.7 Interactions of Cells with Other Cells
		Selectins
		The Immunoglobulin Superfamily
		Cadherins
	11.8 Adherens Junctions and Desmosomes: Anchoring Cells to Other Cells
	11.9 The Role of Cell‐Adhesion Receptors in Transmembrane Signaling
	11.10 Tight Junctions: Sealing the Extracellular Space
	11.11 Gap Junctions and Plasmodesmata: Mediating Intercellular Communication
		Gap Junctions
		Plasmodesmata
	11.12 Cell Walls
	The Human Perspective
		The Role of Cell Adhesion in Inflammation and Metastasis
	Experimental Pathways
		The Role of Gap Junctions in Intercellular Communication
12 Cellular Organelles and Membrane Trafficking
	12.1 An Overview of the Endomembrane System
	12.2 A Few Approaches to the Study of Endomembranes
		Insights Gained from Autoradiography
		Insights Gained from the Use of the Green Fluorescent Protein
		Insights Gained from the Analysis of Subcellular Fractions
		Insights Gained from the Use of Cell‐Free Systems
		Insights Gained from the Study of Mutant Phenotypes
	12.3 The Endoplasmic Reticulum
		The Smooth Endoplasmic Reticulum
		The Rough Endoplasmic Reticulum
	12.4 Functions of the Rough Endoplasmic Reticulum
		Synthesis of Proteins on Membrane‐Bound versus Free Ribosomes
		Synthesis of Secretory, Lysosomal, or Plant Vacuolar Proteins
		Processing of Newly Synthesized Proteins in the Endoplasmic Reticulum
		Synthesis of Integral Membrane Proteins on ER‐Bound Ribosomes
	12.5 Membrane Biosynthesis in the Endoplasmic Reticulum
	12.6 Glycosylation in the Rough Endoplasmic Reticulum
	12.7 Mechanisms That Ensure the Destruction of Misfolded Proteins
	12.8 ER to Golgi Vesicular Transport
	12.9 The Golgi Complex
		Glycosylation in the Golgi Complex
		The Movement of Materials through the Golgi Complex
	12.10 Types of Vesicle Transport and Their Functions
		COPII‐Coated Vesicles: Transporting Cargo from the ER to the Golgi Complex
		COPI‐Coated Vesicles: Transporting Escaped Proteins Back to the ER
	12.11 Beyond the Golgi Complex: Sorting Proteins at the TGN
		Sorting and Transport of Lysosomal Enzymes
		Sorting and Transport of Nonlysosomal Proteins
	12.12 Targeting Vesicles to a Particular Compartment
	12.13 Exocytosis
	12.14 Lysosomes
	12.15 Plant Cell Vacuoles
	12.16 Endocytosis
		Receptor‐Mediated Endocytosis and the Role of Coated Pits
		The Role of Phosphoinositides in the Regulation of Coated Vesicles
	12.17 The Endocytic Pathway
	12.18 Phagocytosis
	12.19 Posttranslational Uptake of Proteins by Peroxisomes, Mitochondria, and Chloroplasts
		Uptake of Proteins into Peroxisomes
		Uptake of Proteins into Mitochondria
		Uptake of Proteins into Chloroplasts
	The Human Perspective
		Disorders Resulting from Defects in Lysosomal Function
	Experimental Pathways
		Receptor‐Mediated Endocytosis
13 The Cytoskeleton
	13.1 Overview of the Major Functions of the Cytoskeleton
	13.2 Microtubules: Structure and Function
		Structure and Composition of Microtubules
		Microtubule‐Associated Proteins
		Microtubules as Structural Supports and Organizers
		Microtubules as Agents of Intracellular Motility
	13.3 Motor Proteins: Kinesins and Dyneins
		Motor Proteins Traverse the Microtubular Cytoskeleton
		Kinesins
		Cytoplasmic Dynein
	13.4 Microtubule‐Organizing Centers (MTOCs)
		Centrosomes
		Basal Bodies and Other MTOCs
		Microtubule Nucleation
	13.5 Microtubule Dynamics
		The Dynamic Properties of Microtubules
		The Underlying Basis of Microtubule Dynamics
	13.6 Cilia and Flagella: Structure and Function
		Structure of Cilia and Flagella
		Growth by Intraflagellar Transport
		The Mechanism of Ciliary and Flagellar Locomotion
	13.7 Intermediate Filaments
		Intermediate Filament Assembly and Disassembly
		Types and Functions of Intermediate Filaments
	13.8 Microfilaments
		Microfilament Structure
		Microfilament Assembly and Disassembly
	13.9 Myosin: The Molecular Motor of Actin Filaments
		Conventional (Type II) Myosins
		Unconventional Myosins
	13.10 Muscle Contractility
		Organization of Sarcomeres
		The Sliding Filament Model of Muscle Contraction
	13.11 Nonmuscle Motility
		Actin-Binding Proteins
	13.12 Cellular Motility
	13.13 Actin‐Dependent Processes During Development
		Axonal Outgrowth
	13.14 The Bacterial Cytoskeleton
	The Human Perspective
		The Role of Cilia in Development and Disease
	Experimental Pathways
		I. The Step Size of Kinesin
		II. Studying Actin‐Based Motility without Cells
14 Cell Division
	14.1 The Cell Cycle
		Phases of the Cell Cycle
		Cell Cycles in Vivo
	14.2 Regulation of the Cell Cycle
	14.3 Control of the Cell Cycle: The Role of Protein Kinases
		Cyclin Binding
		Cdk Phosphorylation/Dephosphorylation
		Cdk Inhibitors
		Controlled Proteolysis
		Subcellular Localization
	14.4 Control of the Cell Cycle: Checkpoints, Cdk Inhibitors, and Cellular Responses
	14.5 M Phase: Mitosis and Cytokinesis
	14.6 Prophase
		Formation of the Mitotic Chromosome
		Centromeres and Kinetochores
		Formation of the Mitotic Spindle
		The Dissolution of the Nuclear Envelope and Partitioning of Cytoplasmic Organelles
	14.7 Prometaphase
	14.8 Metaphase
	14.9 Anaphase
		The Role of Proteolysis in Progression through Mitosis
		The Events of Anaphase
		Forces Required for Chromosome Movements at Anaphase
		The Spindle Assembly Checkpoint
	14.10 Telophase and Cytokinesis
		Motor Proteins Required for Mitotic Movements
		Cytokinesis
		Cytokinesis in Plant Cells: Formation of the Cell Plate
	14.11 Meiosis
	14.12 The Stages of Meiosis
	14.13 Genetic Recombination during Meiosis
	The Human Perspective
		Meiotic Nondisjunction and Its Consequences
	Experimental Pathways
		The Discovery and Characterization of MPF
15 Cell Signaling Pathways
	15.1 The Basic Elements of Cell Signaling Systems
	15.2 A Survey of Extracellular Messengers and Their Receptors
	15.3 Signal Transduction by G Protein-Coupled Receptors
		Receptors
		G Proteins
		Termination of the Response
		Bacterial Toxins
	15.4 Second Messengers
		The Discovery of Cyclic AMP
		Phosphatidylinositol‐Derived Second Messengers
		Phospholipase C
	15.5 The Specificity of G Protein‐Coupled Responses
	15.6 Regulation of Blood Glucose Levels
		Glucose Mobilization: An Example of a Response Induced by cAMP
		Signal Amplification
		Other Aspects of cAMP Signal Transduction Pathways
	15.7 The Role of GPCRs in Sensory Perception
	15.8 Protein-Tyrosine Phosphorylation as a Mechanism for Signal Transduction
		Receptor Dimerization
		Protein Kinase Activation
		Phosphotyrosine‐Dependent Protein–Protein Interactions
		Activation of Downstream Signaling Pathways
		Ending the Response
	15.9 The Ras‐MAP Kinase Pathway
		Accessory Proteins
		Adapting the MAP Kinase to Transmit Different Types of Information
	15.10 Signaling by the Insulin Receptor
		The Insulin Receptor Is a Protein‐Tyrosine Kinase
		Insulin Receptor Substrates 1 and 2
		Glucose Transport
		Diabetes Mellitus
	15.11 Signaling Pathways in Plants
	15.12 The Role of Calcium as an Intracellular Messenger
		IP3 and Voltage‐Gated Ca2+ Channels
		Visualizing Cytoplasmic Ca2+ Concentration in Living Cells
		Ca2+‐Binding Proteins
		Regulating Calcium Concentrations in Plant Cells
	15.13 Convergence, Divergence, and Cross‐Talk among Different Signaling Pathways
	15.14 The Role of NO as an Intercellular Messenger
		NO as an Activator of Guanylyl Cyclase
		Inhibiting Phosphodiesterase
	15.15 Apoptosis (Programmed Cell Death)
		The Extrinsic Pathway of Apoptosis
		The Intrinsic Pathway of Apoptosis
		Necroptosis
		Signaling Cell Survival
	The Human Perspective
		Disorders Associated with G Protein‐Coupled Receptors
	Experimental Pathways
		The Discovery and Characterization of GTP-Binding Proteins
16 Cancer
	16.1 Basic Properties of a Cancer Cell
	16.2 The Causes of Cancer
	16.3 The Genetics of Cancer
	16.4 An Overview of  Tumor‐Suppressor Genes and Oncogenes
	16.5 Tumor‐Suppressor Genes: The RB Gene
	16.6 Tumor‐Suppressor Genes: The TP53 Gene
		The Role of p53: Guardian of the Genome
		The Role of p53 in Promoting Senescence
	16.7 Other Tumor‐Suppressor Genes
	16.8 Oncogenes
		Oncogenes That Encode Growth Factors or Their Receptors
		Oncogenes That Encode Cytoplasmic Protein Kinases
		Oncogenes That Encode Transcription Factors
		Oncogenes That Encode Proteins That Affect the Epigenetic State of Chromatin
		Oncogenes That Encode Metabolic Enzymes
		Oncogenes That Encode Products That Affect Apoptosis
	16.9 The Mutator Phenotype: Mutant Genes Involved in DNA Repair
	16.10 MicroRNAs: A New Player in the Genetics of Cancer
	16.11 The Cancer Genome
	16.12 Gene‐Expression Analysis
	16.13 Strategies for Combating Cancer
	16.14 Immunotherapy
	16.15 Inhibiting the Activity of Cancer‐Promoting Proteins
	16.16 The Concept of a Cancer Stem Cell
	16.17 Inhibiting the Formation of New Blood Vessels (Angiogenesis)
	Experimental Pathways
		The Discovery of Oncogenes
17 Immunity
	17.1 An Overview of the Immune Response
		Innate Immune Responses
		Adaptive Immune Responses
	17.2 The Clonal Selection Theory as It Applies to B Cells
	17.3 Vaccination
	17.4 T Lymphocytes: Activation and Mechanism of Action
	17.5 The Modular Structure of Antibodies
	17.6 DNA Rearrangements That Produce Genes Encoding B‐ and T‐Cell Antigen Receptors
	17.7 Membrane‐Bound Antigen Receptor Complexes
	17.8 The Major Histocompatibility Complex
	17.9 Distinguishing Self from Nonself
	17.10 Lymphocytes Are Activated by Cell‐Surface Signals
		Activation of Helper T Cells by Professional APCs
		Activation of B Cells by TH Cells
	17.11 Signal Transduction Pathways in Lymphocyte Activation
	The Human Perspective
		Autoimmune Diseases
	Experimental Pathways
		The Role of the Major Histocompatibility Complex in Antigen Presentation
18 Techniques in Cell and Molecular Biology
	18.1 The Light Microscope
		Resolution
		Visibility
	18.2 Bright‐Field and Phase‐Contrast Microscopy
		Bright‐Field Light Microscopy
		Phase‐Contrast Microscopy
	18.3 Fluorescence Microscopy (and Related Fluorescence‐Based Techniques)
		Laser Scanning Confocal Microscopy
		Super‐Resolution Fluorescence Microscopy
		Light Sheet Fluorescence Microscopy
	18.4 Transmission Electron Microscopy
	18.5 Specimen Preparation for Electron Microscopy
		Cryofixation and the Use of Frozen Specimens
		Negative Staining
		Shadow Casting
		Freeze‐Fracture Replication and Freeze Etching
	18.6 Scanning Electron Microscopy
	18.7 Atomic Force Microscopy
	18.8 The Use of Radioisotopes
	18.9 Cell Culture
	18.10 The Fractionation of a Cell’s Contents by Differential Centrifugation
	18.11 Purification and Characterization of Proteins by Liquid Column Chromatography
		Ion‐Exchange Chromatography
		Gel Filtration Chromatography
		Affinity Chromatography
	18.12 Determining Protein–Protein Interactions
	18.13 Characterization of Proteins by Polyacrylamide Gel Electrophoresis
		SDS–PAGE
		Two‐Dimensional Gel Electrophoresis
	18.14 Characterization of Proteins by Spectrometry
	18.15 Characterization of Proteins by Mass Spectrometry
	18.16 Determining the Structure of Proteins and Multisubunit Complexes
	18.17 Fractionation of Nucleic Acids
		Separation of DNAs by Gel Electrophoresis
		Separation of Nucleic Acids by Ultracentrifugation
	18.18 Nucleic Acid Hybridization
	18.19 Chemical Synthesis of DNA
	18.20 Recombinant DNA Technology
		Restriction Endonucleases
		Formation of Recombinant DNAs
		DNA Cloning
	18.21 Enzymatic Amplification of DNA by PCR
		Process of PCR
		Applications of PCR
	18.22 DNA Sequencing
	18.23 DNA Libraries
		Genomic Libraries
		cDNA Libraries
	18.24 DNA Transfer into Eukaryotic Cells and Mammalian Embryos
		Transgenic Animals
		Transgenic Plants
	18.25 Gene Editing and Silencing
		In Vitro Mutagenesis
		Knockout Mice
		RNA Interference
		Genome Editing Using Engineered Nucleases
	18.26 The Use of Antibodies
Glossary
Additional Reading
Index
EULA




نظرات کاربران