دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4 نویسندگان: David L. Hayes (editor), Samuel J. Asirvatham (editor), Paul A. Friedman (editor) سری: ISBN (شابک) : 1119263964, 9781119263968 ناشر: Wiley-Blackwell سال نشر: 2021 تعداد صفحات: 643 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 60 مگابایت
در صورت تبدیل فایل کتاب Cardiac Pacing, Defibrillation and Resynchronization: A Clinical Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ضربان قلب، دفیبریلاسیون و همگام سازی مجدد: یک رویکرد بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای عملی و به روز برای فناوری ضربان ساز و اجرای بالینی آن
همانطور که زمینه قلب و عروق در حال پیشرفت و گسترش است، فناوری و تخصص پشت دستگاه های الکتروفیزیولوژیک امروزی پيسينگ قلبي، دفيبريلاسيون و همگام سازي مجدد توسط متخصصان بين المللي جمع آوري شده است تا به همه کساني که از بيماران مبتلا به اختلالات قلبي مراقبت مي کنند، راهنمايي روشن و آموزنده در مورد ضربان سازها و روش هاي باليني امروزي ارائه دهد. اکنون در چهارمین ویرایش خود، این منبع ضروری:
نوشته شده برای متخصصان قلب، مراقبان ضربان قلب، و کسانی که برای انجام معاینات هیئت الکتروفیزیولوژی خود آماده می شوند، ضربان قلب، دفیبریلاسیون و همگام سازی مجدد کاوش کاملی از دستگاه های الکتروفیزیکی و نقش حیاتی آنها در قلب و عروق مدرن.
A practical and up-to-date guide to pacemaker technology and its clinical implementation
As the field of cardiology continues to advance and expand, so too does the technology and expertise behind today’s electrophysiological devices. Cardiac Pacing, Defibrillation and Resynchronization has been assembled by international specialists to give all those caring for patients with heart disorders a clear and informative guide to the pacemakers and clinical methods of today. Now in its fourth edition, this essential resource:
Written for cardiologists, cardiac pacing caregivers, and those preparing to take their electrophysiology board examinations, Cardiac Pacing, Defibrillation and Resynchronization offers a complete exploration of electrophysical devices and their vital role in modern-day cardiology.
Cover Title Page Copyright Page Contents Contributors Preface Chapter 1 Pacing and Defibrillation: Clinically Relevant Basics for Practice Anatomy and physiology of the cardiac conduction system Electrophysiology of myocardial stimulation Pacing basics Stimulation threshold Variations in stimulation threshold Clinical considerations when considering threshold Sensing Lead design Bipolar and unipolar pacing and sensing Left ventricular and His bundle pacing leads Epicardial leads Defibrillator leads – special considerations Leadless pacemakers Pulse generators Pacemaker nomenclature Essentials of defibrillation Critical mass Upper limit of vulnerability Progressive depolarization Virtual electrode depolarization Electroporation as a mechanism for defibrillation Defibrillation theory summary The importance of waveform Biphasic waveforms Phase duration and tilt Polarity and biphasic waveforms Mechanism of improved efficacy with biphasic waveforms Measuring shock dose Measuring the efficacy of defibrillation Threshold and dose–response curve Relationship between defibrillation threshold and dose–response curve Patient-specific defibrillation threshold and safety margin testing – clinical indications Management of the patient who fails defibrillation testing Upper limit of vulnerability to assess safety margin Practical implications of defibrillator therapies Drugs and defibrillators Antitachycardia pacing Summary References Chapter 2 Hemodynamics of Cardiac Pacing: Optimization and Programming to Enhance Cardiac Function Cardiovascular physiology Abnormal physiology Basics of hemodynamic pacing Chronotropic response Atrioventricular dissociation and ventriculoatrial conduction Atrioventricular synchrony Rate-adaptive atrioventricular intervals Atrioventricular optimization Principles of echocardiographic atrioventricular optimization Atrial mechanical function Effect of pacing mode on morbidity and mortality Pressure–volume optimization Optimal ventricular pacing sites Pacing in heart failure Influence of pacing site Mechanisms underlying the benefits of left ventricular and biventricular pacing Left ventricular diastolic function Atrioventricular optimization in cardiac resynchronization therapy Ventricular timing optimization (ventriculo-ventricular optimization) Optimizing site of pacing (left ventricular and/or right ventricular) Electrical parameters for ventriculo-ventricular optimization QRS vector fusion Echocardiography for ventricular timing optimization Clinical approaches to ventriculo‐ventricular optimization Newer programming features to optimize hemodynamics via pacing Other endpoints for optimization Right ventricular function Cardiac contractility modulation pacing Ventricular rate regulation Less common indications for pacing for hemodynamic improvement Pacing in hypertrophic obstructive cardiomyopathy Hemodynamic benefits of pacing in neurocardiogenic syndromes Hemodynamic benefits of pacing in first-degree atrioventricular block Conclusions References Chapter 3 Indications for Pacemakers, Implantable Cardioverter-Defibrillators, and Cardiac Resynchronization Therapy: Identifying Patients Who Benefit from Cardiac Rhythm Devices Indications for permanent pacing Atrioventricular block Acute myocardial infarction Chronic bifascicular and trifascicular block Sinus node dysfunction Neurally mediated reflex syncope Tachyarrhythmias Hypertrophic cardiomyopathy Congestive heart failure Pacing after cardiac transplantation Indications for the implantable cardioverter‐defibrillator Secondary prevention Primary prevention Coronary artery disease Dilated cardiomyopathy Long QT syndrome Brugada syndrome and sudden unexplained death syndrome Other channelopathies Arrhythmogenic right ventricular dysplasia Hypertrophic cardiomyopathy Congenital heart disease Wearable cardioverter-defibrillator therapy Contraindications to implantable cardioverter-defibrillator therapy Acknowledgement References Chapter 4 Choosing the Device Generator and Leads: Matching the Device with the Patient Pacemaker selection Symptomatic bradycardia Pure sinus node dysfunction Pure atrioventricular block Neurocardiogenic syncope and carotid sinus hypersensitivity Choosing specific programmable options Choosing the rate-adaptive sensor Choosing the lead or leads Threshold reduction Lead polarity Electrode design Lead conductor Lead insulation Lead diameter Compatibility of lead and pulse generator Epicardial leads Resources for lead performance and survival data Leadless pacemakers Generator and lead selection in defibrillators Lead design considerations for internal cardioverter-defibrillator leads Programmable waveforms Dual-chamber or single-chamber internal cardioverter-defibrillator? Factors favoring single-chamber defibrillators Factors favoring dual-chamber defibrillators Specific device and lead features influencing selection Conclusions References Chapter 5 Implanting and Extracting Cardiac Devices: Technique and Avoiding Complications Implantation facility Anesthesia The pulse generator pocket Venous approaches Axillary (extrathoracic subclavian) approach Subclavian approach Cephalic approach Jugular approach Iliac vein approach Ventricular lead placement Coronary sinus lead placement Coronary sinus cannulation Coronary sinus venography Securing permanent leads Dual-chamber pulse generator implantation Measurement of pacing and sensing thresholds Determination of pacing threshold Determination of sensing threshold Epicardial systems Hardware adaptations Special considerations in pediatric patients Device implantation after cardiac transplantation Leadless pacemaker implantation Selective conduction system pacing Delivery tools Subcutaneous implantable cardioverter-defibrillator implantation Interventional techniques for device implantation procedures Hospital stay after implantation Pulse generator replacement Postimplant order set Homegoing instructions Lead extraction Indications for lead extraction Facility requirements for lead extraction Outcomes of lead extraction Complications of lead extraction Extraction techniques References Chapter 6 Implant-Related Complications: Relevant Anatomy and Approaches for Prevention Inadvertent left ventricular lead placement Lead dislodgment Loose connector block connection Pneumothorax Lead perforation Pericarditis Pulse generator pocket hematoma Pain Arrhythmias Extracardiac stimulation Infection Allergic reaction Twiddler’s syndrome Thrombosis Battery depletion Loss of circuit integrity from therapeutic radiation Patients with conventional cardiac implantable electronic device undergoing magnetic resonance imaging Abandoned and nonfunctioning, noninfected leads Subclavian crush, lead fracture, and insulation defect Pacemaker syndrome Tricuspid regurgitation Dyssynchrony and cardiomyopathy Complications in specific devices Magnetic resonance conditional devices Cardiac resynchronization therapy device Subcutaneous implantable cardioverter defibrillator Leadless pacemaker Acknowledgements References Chapter 7 Timing Cycles Basic approach Pacing modes Atrial inhibited pacing Single-chamber triggered-mode pacing Rate-modulated pacing Atrioventricular sequential, ventricular inhibited pacing (DVI) Atrioventricular sequential, non-P-synchronous pacing with dual-chamber sensing (DDI) Atrioventricular sequential, non-P-synchronous, rate-modulated pacing with dual-chamber sensing (DDIR) Atrial synchronous (P-tracking/P-synchronous) pacing (VDD) Dual-chamber pacing and sensing with inhibition and tracking (DDD) Portions of pacemaker timing cycles Atrioventricular interval Comparison of atrial with ventricular-based timing Dual-chamber rate-modulated pacemakers: effect on timing cycles Mode switching Avoiding atrial pace/sense competition Timing components of ventricular avoidance pacing algorithms Endless-loop tachycardia Timing cycles with algorithms responding to sudden bradycardia Timing cycles unique to biventricular pacing Timing cycles in implantable cardioverter-defibrillators Initial electrocardiographic interpretation Response to magnet application Single-chamber pacemakers Dual-chamber pacemakers Biventricular paced electrocardiogram: position, adequacy, and timing Characteristic electrocardiographic patterns with specific lead locations Timing intervals and the electrocardiogram Atrioventricular interval programming Electrocardiographic considerations in the patient not responding to cardiac resynchronization therapy Conclusions References Chapter 8 Programming: Maximizing Benefit and Minimizing Morbidity Programming Defibrillator programming Implantable cardioverter-defibrillator sensing Implantable cardioverter-defibrillator detection Supraventricular tachycardia–ventricular tachycardia discriminators Dual-chamber supraventricular tachycardia–ventricular tachycardia discriminators Ventricular therapies Atrial defibrillators: detection and therapies Optimizing programming: general consideration Optimizing programming: manufacturer-specific recommendations Subcutaneous implantable defibrillator Cardiac resynchronization programming Algorithms to promote continuous tracking Algorithms to manage premature ventricular complexes Algorithms to manage atrial fibrillation Device-based optimization for cardiac resynchronization Conclusions References Chapter 9 Sensor Technology for Rate-Adaptive Pacing and Hemodynamic Optimization Indications for rate-adaptive pacing Sensors available for rate-adaptive pacing Activity sensors Minute ventilation sensors SonR sensor (previously called peak endocardial acceleration sensor) Right ventricular impedance-based sensor Stimulus-T or QT, sensing pacemaker Temperature-sensing rate-adaptive pacemakers Other sensors Dual-sensor rate-adaptive pacing Sensor applications for hemodynamic management Programming Programmable parameters Rate-adaptive pacing with cardiac resynchronization devices Programming atrioventricular and interventricular optimization Future of rate-adaptive sensors References Chapter 10 Troubleshooting Fundamentals Issues common to all cardiovascular implantable electronic devices History specific to troubleshooting implantable cardioverter-defibrillator shocks Basics of troubleshooting sensing Electrogram sources Event markers, undersensing, and oversensing Stored versus real-time electrograms Near-field versus far-field electrograms Pacemaker troubleshooting Absence of expected pacing Pacing with an altered rate or escape interval Failure to capture Other pacemaker issues Implantable cardioverter-defibrillator troubleshooting Troubleshooting antitachycardia therapy Ventricular oversensing: diagnosis and management Diagnosis of implantable cardioverter-defibrillator lead failure Approach to the patient with frequent shocks Unsuccessful shocks Failure to deliver or delayed therapy Troubleshooting the subcutaneous implantable cardioverter-defibrillator Troubleshooting subcutaneous implantable cardioverter-defibrillator oversensing Troubleshooting cardiac resynchronization devices Resynchronization of <90–95% of R-R intervals Troubleshooting other problems in cardiac resynchronization therapy systems References Chapter 11 Radiography of Implantable Devices Introduction Pulse generators Leads Pacemaker leads Transvenous atrial leads Transvenous ventricular leads Epicardial leads Implantable cardioverter-defibrillator leads Epicardial implantable cardioverter-defibrillator leads Transvenous implantable cardioverter-defibrillator leads Coronary venous leads Miscellaneous considerations Conclusions References Chapter 12 Electromagnetic Interference: Sources, Recognition, and Management Pacemaker responses to noise Asynchronous pacing Mode resetting (power-on reset, or electrical reset) Environmental electromagnetic interference Clinical advice Hacking References Chapter 13 Follow-up Requirements for a device follow-up clinic Space Personnel Equipment Pacemaker follow-up Trans-telephonic monitoring Equipment Trans-telephonic monitoring sequence Remote monitoring and integration Pacemaker clinic follow-up visit Leadless intracardiac pacing system Implantable cardioverter-defibrillator follow-up Assessment of the patient’s clinical status Pulse generator assessment Capacitor status Assessing lead function Defibrillation efficacy assessment Medications Strategies to minimize shocks Subcutaneous implantable cardioverter-defibrillators Cardiac resynchronization therapy follow-up specifics Patients’ concerns during follow-up Medical advisories and recalls Lifestyle and personal concerns Psychologic issues encountered following device implantation Withdrawal of device support Conclusions References Index EULA