ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors: Applications, Fabrication and Commercialization

دانلود کتاب نانومواد کربن و سنسورهای گاز شیمیایی مقاومتی مبتنی بر نانوکامپوزیت آنها: کاربردها، ساخت و تجاری سازی

Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors: Applications, Fabrication and Commercialization

مشخصات کتاب

Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors: Applications, Fabrication and Commercialization

ویرایش:  
نویسندگان:   
سری: Micro and Nano Technologies 
ISBN (شابک) : 9780128228371 
ناشر: Elsevier 
سال نشر: 2023 
تعداد صفحات: 266 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors: Applications, Fabrication and Commercialization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد کربن و سنسورهای گاز شیمیایی مقاومتی مبتنی بر نانوکامپوزیت آنها: کاربردها، ساخت و تجاری سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors: Applications, Fabrication and Commercialization
Copyright
Contents
Introductuin
List of contributors
Preface
Part I: Introduction to sensing materials
	1. Carbon-based nanomaterials
		1.1 Introduction carbon nanomaterials
		1.2 Types of carbon nanomaterials
			1.2.1 Diamond
			1.2.2 Graphite
			1.2.3 Carbon nanotubes
			1.2.4 Fullerene
			1.2.5 Carbon nanomaterials
		1.3 Quantum confinement in carbon nanomaterials
		1.4 Properties of carbon nanomaterials
			1.4.1 Properties of carbon nanotubes
			1.4.2 Properties of graphene
			1.4.3 Properties of activated carbons (nanocarbons)
			1.4.4 Properties of template carbons
			1.4.5 Properties of carbon fibers
			1.4.6 Properties of carbon nanomaterials
		1.5 Synthesis methodologies and variations
			1.5.1 Synthesis of carbon nanotubes
			1.5.2 Synthesis of pure graphene
			1.5.3 Synthesis of activated carbon
			1.5.4 Synthesis of other carbon nanostructures
		1.6 Acid simulation of carbon materials and their importance
		1.7 Acid functionalization and their importance
			1.7.1 End defect functionalization
			1.7.2 Side wall and surface functionalization
			1.7.3 Wet oxidation of carbon nanomaterial
			1.7.4 Wet oxidation of graphene
		1.8 Applications
			1.8.1 Carbon nanotubes
			1.8.2 Graphene
		1.9 Conclusion
		References
	2. Semiconductor oxide nanomaterial
		2.1 Introduction of semiconductor oxide nanomaterials
		2.2 Synthesis of oxide nanomaterials and variations
			2.2.1 Physical vapor deposition
			2.2.2 Thermal evaporation or resistive heating technique
			2.2.3 Electron beam evaporation
			2.2.4 Radio frequency heating
			2.2.5 Flash evaporation
			2.2.6 Laser ablation technique/pulsed laser deposition
				2.2.6.1 Factors responsible for PLD deposition
					2.2.6.1.1 Deposition conditions
					2.2.6.1.2 Laser beam parameters
			2.2.7 Sputtering technique
				2.2.7.1 Working of sputtering system
			2.2.8 Molecular beam epitaxy
				2.2.8.1 Various components of MBE
		2.3 Chemical/solution method for the growth of metal oxide nanoparticles
			2.3.1 Chemical vapor deposition
			2.3.2 Photochemical vapor deposition
			2.3.3 Plasma-enhanced CVD
			2.3.4 Chemical methods
		2.4 Types of oxide materials and their importance
		2.5 Need of functionalization of oxide materials
		2.6 Future aspects for MOS
		References
	3. Conducting polymers as gas sensing material
		3.1 Introduction of conducting polymers and their role as gas sensing material
			3.1.1 Theory of conductivity
			3.1.2 Band theory
				3.1.2.1 Gas sensing mechanism of conducting polymers
				3.1.2.2 Amperometric gas sensors
				3.1.2.3 Potentiometric sensors
				3.1.2.4 Electrical device sensors
		3.2 Synthesis of conductive polymers and their importance
			3.2.1 Synthetic preparation methods of conducting polymers
				3.2.1.1 Chemical method
				3.2.1.2 Electrochemical method
				3.2.1.3 Photochemical method
				3.2.1.4 Metathesis method
				3.2.1.5 Concentrated emulsion method
				3.2.1.6 Inclusion method
				3.2.1.7 Solid-state method
				3.2.1.8 Plasma polymerization
				3.2.1.9 Pyrolysis method
			3.2.2 Some examples
				3.2.2.1 Polyacetylene
			3.2.3 Polyaniline
				3.2.3.1 Polypyrrole
		3.3 Need of functionalization of conducting polymers with carbon materials
		3.4 Applications
		References
Part II: Application of carbon nanomaterials in gas sensing
	4. Carbon nanomaterial-based chemiresistive sensors
		4.1 Introduction to sensor and its types
		4.2 Importance of chemiresistive gas sensors
			4.2.1 Semiconductor metal-oxide gas sensors
			4.2.2 Conductive-polymer gas sensors
		4.3 Fabrication of carbon nanomaterials-based sensors
			4.3.1 Hydrogen gas detection
			4.3.2 Volatile organic compound detection
			4.3.3 Fossil fuel emissions detection
			4.3.4 Military and defense explosives detection
			4.3.5 Greenhouse gases
			4.3.6 Biological contaminants
		4.4 Sensor comparison at lab/industrial level
		4.5 Sensing mechanism of chemiresistive sensors
		References
	5. Semiconductor oxide based chemiresistive gas sensors
		5.1 Introduction
		5.2 Fabrication and designing of C-SMO gas sensors
			5.2.1 Growth techniques of sensing material for C-SMO gas sensors
				5.2.1.1 Traditional technology
				5.2.1.2 Thick film technology
				5.2.1.3 Thin film technology
		5.3 Working principle of a C-SMO-based chemiresistors
		5.4 Performance parameters for C-SMO gas sensor
		5.5 Sensing mechanism in C-SMO gas sensor
			5.5.1 Pristine oxides
			5.5.2 Metal/metal oxide functionalized metal oxides
		5.6 Factors influencing sensing characteristics of C-SMO gas sensor
		5.7 Semiconductor oxide sensor outcomes
			5.7.1 At lab level
			5.7.2 At industrial level
		5.8 Challenges and future prospect
		References
	6. Synthesis and application of carbon-based nanocomposite
		6.1 Introduction
		6.2 Synthesis of carbon materials/SMO nanocomposites
			6.2.1 Ex-situ techniques
				6.2.1.1 Covalent interactions
				6.2.1.2 π-π stacking
				6.2.1.3 Electrostatic interactions
			6.2.2 In-situ techniques
				6.2.2.1 Electrochemical techniques
				6.2.2.2 Chemical reduction and oxidation
				6.2.2.3 Electrodeposition
				6.2.2.4 Sol-gel process
			6.2.3 Hydrothermal and aerosol techniques
				6.2.3.1 Vapor-assisted, polyol-assisted process
				6.2.3.2 Supercritical solvent
			6.2.4 Gas-phase deposition
				6.2.4.1 Evaporation and sputtering
				6.2.4.2 Pulsed laser deposition
				6.2.4.3 Chemical vapor deposition
				6.2.4.4 Atomic layer deposition
		6.3 Synthesis of graphene/SMO-based nanocomposites
			6.3.1 Common synthesis methods of the G-SMO nanocomposites
			6.3.2 Hydrothermal method
			6.3.3 Self-assembly method
			6.3.4 In situ method
			6.3.5 Solution mixing method
			6.3.6 Spin coating
		6.4 Conclusion
		6.5 Synthesis of CNTs/conducting polymers-based nanocomposites
		6.6 Functionalization of carbon nanotubes with covalent and noncovalent
			6.6.1 Synthesis techniques
				6.6.1.1 Arc discharge method
				6.6.1.2 Laser ablation method
				6.6.1.3 Solution mixing
				6.6.1.4 Melt mixing
				6.6.1.5 In situ polymerization
		6.7 Applications of nanocomposites
			6.7.1 Graphene/SMOs nanocomposites and CNTs/SMOs nanocomposites
				6.7.1.1 Sensors
				6.7.1.2 Energy storage and conversion
				6.7.1.3 Lithium-ion batteries/sodium-ion batteries/zinc-ion batteries
				6.7.1.4 Supercapacitors
				6.7.1.5 Solar cells
				6.7.1.6 Photodetector
				6.7.1.7 Photocatalysts
				6.7.1.8 Hydrogen storage
			6.7.2 CNTs/CPs nanocomposites
				6.7.2.1 Sensors
				6.7.2.2 Supercapacitors
				6.7.2.3 Lithium-ion batteries
				6.7.2.4 Fuel cell
				6.7.2.5 Solar cell
				6.7.2.6 Electromagnetic interference shielding
		References
	7. Fabrication of chemiresistive gas sensor with carbon materials/polymers nanocomposites
		7.1 Introduction
		7.2 Fabrication of CNTs/SMOs-based sensors
		7.3 Fabrication of graphene/SMOs-based sensors
		7.4 Fabrication of CNTs/conducting polymers-based sensors
		7.5 Fabrication of wireless-based networks sensors
			7.5.1 Network architecture
			7.5.2 Materials used in fabrication of devices for WSN
			7.5.3 Fabrication of FBT
				7.5.3.1 Bipolar field effect transistor
		7.6 Sensing mechanisms
			7.6.1 Sensor outcomes at laboratories/industrial level
		7.7 Conclusions and future prospects
		Acknowledgement
		References
	8. Potential applications of chemiresistive gas sensors
		8.1 Introduction
			8.1.1 Sensor response (S)
			8.1.2 Sensitivity (S0)
			8.1.3 Response time
			8.1.4 Recovery time
			8.1.5 Selectivity
			8.1.6 Limit of detection
			8.1.7 Stability
			8.1.8 Linearity
		8.2 Environmental monitoring
			8.2.1 Carbon monoxide (CO) gas sensor
			8.2.2 Hydrogen sulfide (H2S) gas sensor
			8.2.3 Ammonia (NH3) and nitrogen dioxide (NO2) gas sensors
			8.2.4 Chlorine (Cl2) gas sensor
		8.3 Medical diagnosis
		8.4 Food and agriculture applications
		8.5 Detection of explosives and military applications
		References
Index




نظرات کاربران