دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شیمی ارگانیک ویرایش: نویسندگان: Marc Robert, Cyrille Costentin, Kim Daasbjerg سری: Energy and Environment Series ISBN (شابک) : 1788015460, 9781788015462 ناشر: Royal Society of Chemistry سال نشر: 2020 تعداد صفحات: 460 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Carbon Dioxide Electrochemistry: Homogeneous and Heterogeneous Catalysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکتروشیمی دی اکسید کربن: کاتالیز همگن و ناهمگن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تبدیل نور و الکتریسیته به مواد شیمیایی جزء مهم یک سیستم انرژی پایدار است. الکتروشیمی دی اکسید کربن پیشرفتهای متفاوتی را در این زمینه به نمایش میگذارد و دو دنیای کاتالیزور همگن و ناهمگن را که اغلب در رقابت در تحقیقات تلقی میشوند، پل میکند. این عنوان که توسط دانشمندان معتبر بین المللی نوشته و ویرایش شده است، برای دانشجویان و محققانی که در زمینه انرژی، کاتالیزور، مهندسی شیمی و شیمی فیزیک کار می کنند، جذاب خواهد بود.
Conversion of light and electricity to chemicals is an important component of a sustainable energy system. Carbon Dioxide Electrochemistry showcases different advances in the field and bridges the two worlds of homogeneous and heterogeneous catalysis that are often perceived as in competition in research. Written and edited by internationally recognised scientists, this title will appeal to students and researchers working in energy, catalysis, chemical engineering and physical chemistry.
Cover Preface Contents Preface Contents 1 Approaches to Controlling Homogeneous Electrochemical Reduction of Carbon Dioxide 1.1 Introduction 1.2 Overview of Parameters for Evaluating Electrocatalysts 1.3 Overview of Metals Utilized in Electrochemical CO2 Reduction 1.3.1 Group 6 1.3.2 Group 7 1.3.3 Group 8 1.3.4 Group 9 1.3.5 Group 10 1.4 Brønsted Acid Source 1.5 Pendent Proton Shuttles 1.6 Through Space Effects 1.7 Lewis Acid and Base Additives 1.8 Cooperativity in Multinuclear Metal Systems 1.9 Overpotential – Activity Relationship 1.10 Selective Formate Production 1.11 Catalyst Comparison 1.12 Future Outlook and Recommendations Acknowledgements References 2 Homogeneous Electrochemical Reduction of CO2. From Homogeneous to Supported Systems 2.1 Introduction 2.2 Immobilization of Molecular Catalysts and Creation of Single-atom Catalysts 2.2.1 Support Material 2.2.2 Methods for Immobilization of Molecular Catalysts 2.2.3 Single-atom Catalysts: Bridging Molecular Supported Catalysis and Electrocatalysis 2.3 Characterization and Performance of Assemblies 2.4 Toward Kinetic and Mechanistic Characterization of Supported Systems 2.4.1 Introduction 2.4.2 General Considerations for Kinetic Analysis of Supported Systems 2.4.3 Insights into Mechanisms for CO2 Reduction 2.4.4 Toward Improved Efficiency References 3 Heterogeneous Electrochemical CO2 Reduction 3.1 Introduction 3.2 Electrocatalyst 3.2.1 Aqueous CO2 Chemistry 3.2.2 Selectivity Trends 3.2.3 Activating Carbon Dioxide 3.2.4 Carbon Monoxide Evolution Over Silver and Gold 3.2.5 Enhancing Carbon Monoxide Evolution Activity 3.2.6 Distribution of Products Formed Over Polycrystalline Copper 3.2.7 CO as the Intermediate to Hydrocarbons and Alcohols 3.2.8 Reversibly Adsorbed CO 3.2.9 Dependence of Methane and Ethene Evolution Activity on Surface Atomic Structure 3.2.10 Dependence of Methane and Ethene Evolution Activity on Electrolyte pH 3.2.11 Mechanism of CO Methanation 3.2.12 Mechanisms of C–C Coupling 3.2.13 Aldehydes as Intermediates to Primary Alcohols 3.2.14 Aldehydes as Intermediates to the Conjugate Bases of Carboxylic Acids 3.2.15 Modifying the Selectivity of Copper 3.3 Electrolyte 3.3.1 Concentration Polarization 3.3.2 Impact of Electrochemical Cell Hydrodynamics 3.3.3 Impact of Buffer Concentration and Acidity 3.3.4 Impact of Cation Size 3.4 Conclusions References 4 Nanostructures for CO2 Reduction: From Theoretical Insight to Material Design 4.1 Introduction 4.2 Theoretical Insights in Electrochemical CO2 Reduction 4.2.1 Reaction Complexity 4.2.2 Reaction Paths and Intermediates 4.2.3 CO2RR Descriptors 4.2.4 CORR Descriptors 4.3 Nanostructured Mono-metallic Catalysts 4.3.1 Nanostructured Au Catalysts 4.3.2 Nanostructured Ag Catalysts 4.3.3 Nanostructured Cu Catalystsz 4.4 Nanostructured Bi-metallic Catalystsy 4.4.1 Cu–Pd/Pt Catalysts 4.4.2 Cu–In/Sn Catalysts 4.4.3 Cu–Au/Ag/Zn Catalysts 4.5 Activity Comparison 4.6 Summary and Outlook Acknowledgements References 5 Theoretical Approach to Homogeneous Catalytic Reduction of CO2: Mechanistic Understanding to Build New Catalysts 5.1 Introduction 5.1.1 Difficulty in CO2 Reduction 5.1.2 Present Status: Organo-catalysts and Transition Metal-based Homogeneous and Heterogeneous CO2 Reduction 5.2 Theoretical Background 5.2.1 Potential Energy Surface and Reaction Energetics 5.2.2 Relating Thermodynamics and Kinetics: Bell–Evans–Polanyi (BEP) Principle 5.2.3 Computational Methodology 5.2.4 Calculation of Hydricity 5.2.5 Calculation of Standard Reduction Potential and pKa 5.3 Case Studies: Non-noble Metal Catalysed Homogeneous CO2 Reduction 5.3.1 CO2 Reductive Dissociation 5.3.2 CO2 Hydrogenation 5.4 Summary and Future Outlook References 6 Bridging Homogeneous and Heterogeneous Systems: Atomically Dispersed Metal Atoms in Carbon Matrices for Electrocatalytic CO2 Reduction 6.1 Introduction 6.1.1 Bridging Homogeneous and Heterogeneous Catalysts 6.1.2 Carbon-based Electrocatalysts 6.2 Preparation of Carbon-based Atomically Dispersed Metal Catalysts 6.2.1 Atomic Layer Deposition 6.2.2 Wet Chemistry Process 6.2.3 Pyrolysis at High Temperature 6.2.4 Graphite-conjugated Catalysts 6.3 Characterization of Atomically-dispersed Metal Catalysts 6.3.1 Identification of Atomically-dispersed Metal Atoms 6.3.2 In Situ/Operando Measurement Techniques 6.4 Structure and Activity of Atomically-dispersed Metal Catalysts 6.4.1 Structure of Dispersed Metal Atoms on Carbon Supports 6.4.2 CO2 Reduction Activities of Atomically-dispersed Metal Catalysts 6.4.3 Metal Active Sites with Low Coordination Number 6.4.4 Metal Active Sites with Carbon Coordination 6.4.5 Metal Active Sites with Axial Coordination 6.4.6 Effect of Second Coordination Sphere (SCS): Inductive Effect 6.4.7 Effect of SCS: Local Proton Environment 6.4.8 Effect of the Oxidation State of the Metal Centre 6.5 Production of Highly-reduced C1 and Multi-carbon Products 6.5.1 Production of C1 Hydrocarbons 6.5.2 Production of Multi-carbon Products 6.6 Conclusions References 7 Bridging Homogeneous and Heterogeneous Systems— Photoelectrodes for CO2 Electrochemical Conversion 7.1 Introduction 7.2 The Physicochemical Process at the Semiconductor Photoelectrode 7.2.1 The Semiconductor/Electrolyte Junction 7.2.2 The Buried Junction 7.3 Co-catalyst Selection for CO2 Reduction 7.3.1 Heterogeneous Catalysts 7.3.2 Molecular Catalysts 7.3.3 Enzyme Catalysts 7.4 Electrolyte Solution Selection 7.4.1 Solvent 7.4.2 Electrolyte 7.4.3 Additives 7.5 Summary References 8 Hybrid Biological–Inorganic Systems for CO2 Conversion to Fuels 8.1 Introduction 8.2 Carbon Fixation Cycles 8.2.1 Aerobic Carbon Fixation 8.2.2 Anaerobic Carbon Fixation 8.3 Efficiency Metrics 8.4 Classes of Hybrid Biological–Inorganic (HBI) Systems 8.4.1 Direct H2 HBI Systems 8.4.2 Indirect H2 HBI Systems Organic Mediators 8.4.3 Electron Transfer HBI Systems 8.5 Conclusions Abbreviations Acknowledgements References 9 Spectroscopic Methods to Study Electrochemical CO2 Reduction 9.1 Introduction 9.2 Vibrational Spectroscopy for the Investigation of Electrochemical CO2 Reduction 9.2.1 Infrared Spectroscopy 9.2.2 Raman Spectroscopy 9.3 X-ray Absorption Spectroscopy for the Investigation of Electrochemical CO2 Reduction 9.3.1 Application in Heterogeneous Systems 9.3.2 Application in Homogeneous Systems 9.4 UV–Vis Spectroscopy for the Investigation of Electrochemical CO2 Reduction 9.4.1 Application in Homogeneous Systems 9.5 Summary and Outlook References 10 Electrochemical Reactors 10.1 Introduction 10.2 Differentiated CO2RR Chemistry in an H-Cell and Flow Reactor 10.3 Catalyst Testing at High Current Densities 10.4 Flow Reactor Architectures 10.5 Membranes 10.5.1 Anion Exchange Membranes 10.5.2 Cation Exchange Membranes 10.5.3 Bipolar Membranes 10.6 Gas Diffusion Electrodes 10.6.1 Gas Diffusion Layers 10.6.2 Gas Diffusion Electrode Structure and Function 10.6.3 Water Management 10.7 Conclusions References Subject Index