دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 2 نویسندگان: Morris Kline سری: Dover Books on Mathematics ISBN (شابک) : 0486404536, 9780486404530 ناشر: Dover Publications سال نشر: 1998 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Calculus: An Intuitive and Physical Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب: رویکرد شهودی و جسمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمه کاربردی محور موضوع را تا حد امکان به علم مرتبط می کند. کاوشهای عمیق مشتق، تمایز و ادغام قدرتهای x، قضایای تمایز و ضد تمایز، قانون زنجیره و بررسی توابع مثلثاتی، توابع لگاریتمی و نمایی، تکنیکهای ادغام، مختصات قطبی و موارد دیگر. مثال ها. نسخه 1967. راهنمای راه حل در صورت درخواست موجود است.
Application-oriented introduction relates the subject as closely as possible to science. In-depth explorations of the derivative, the differentiation and integration of the powers of x, theorems on differentiation and antidifferentiation, the chain rule and examinations of trigonometric functions, logarithmic and exponential functions, techniques of integration, polar coordinates, much more. Examples. 1967 edition. Solution guide available upon request.
CHAPTER 1 WHY CALCULUS? 1. The Historical Motivations for the Calculus 2. The Creators of the Calculus 3. The Nature of the Calculus CHAPTER 2 THE DERIVATIVE 1. The Concept of Function 2. The Graph or Curve of a Function 3. Average and Instantaneous Speed 4. The Method of Increments 5. A Matter of Notation 6. The Method of Increments Applied to y = ax2 7. The Derived Function 8. The Differentiation of Simple Monomials 9. The Differentiation of Simple Polynomials 10. The Second Derivative CHAPTER 3 THE ANTIDERIVED FUNCTION OR THE INTEGRAL 1. The Integral 2. Straight Line Motion in One Direction 3. Up and Down Motion 4. Motion Along an Inclined Plane APPENDIX The Coordinate Geometry of Straight Lines A1. The Need for Geometrical Interpretation A2. The Distance Formula A3. The Slope of a Straight Line A4. The Inclination of a Line A5. Slopes of Parallel and Perpendicular Lines A6. The Angle Between Two Lines A7. The Equation of a Straight Line A8. The Distance from a Point to a Line A9. Equation and Curve CHAPTER 4 THE GEOMETRICAL SIGNIFICANCE OF THE DERIVATIVE 1. The Derivative as Slope 2. The Concept of Tangent to a Curve 3. Applications of the Derivative as the Slope 4. The Equation of the Parabola 5. Physical Applications of the Derivative as Slope 6. Further Discussion of the Derivative as the Slope CHAPTER 5 THE DIFFERENTIATION AND INTEGRATION OF POWERS OF x 1. Introduction 2. The Functions xn for Positive Integral n 3. A Calculus Method of Finding Roots 4. Differentiation and Integration of xn for Fractional Values of n CHAPTER 6 SOME THEOREMS ON DIFFERENTIATION AND ANTIDIFFERENTIATION 1. Introduction 2. Some Remarks about Functions 3. The Differentiation of Sums and Differences of Functions 4. The Differentiation of Products and Quotients of Functions 5. The Integration of Combinations of Functions 6. All Integrals Differ by a Constant 7. The Power Rule for Negative Exponents 8. The Concept of Work and an Application CHAPTER 7 THE CHAIN RULE 1. Introduction 2. The Chain Rule 3. Application of the Chain Rule to Differentiation 4. The Differentiation of Implicit Functions 5. Equations of the Ellipse and Hyperbola 6. Differentiation of the Equations of Ellipse and Hyperbola 7. Integration Employing the Chain Rule 8. The Problem of Escape Velocity 9. Related Rates APPENDIX Transformation of Coordinates A1. Introduction A2. Rotation of Axes A3. Translation of Axes A4. Invariants CHAPTER 8 MAXIMA AND MINIMA 1. Introduction 2. The Geometrical Approach to Maxima and Minima 3. Analytical Treatment of Maxima and Minima 4. An Alternative Method of Determining Relative Maxima and Minima 5. Some Applications of the Method of Maxima and Minima 6. Some Applications to Economics 7. Curve Tracing CHAPTER 9 THE DEFINITE INTEGRAL 1. Introduction 2. Area as the Limit of a Sum 3. The Definite Integral 4. The Evaluation of Definite Integrals 5. Areas Below the x-Axis 6. Areas Between Curves 7. Some Additional Properties of the Definite Integral 8. Numerical Methods for Evaluating Definite Integrals APPENDIX The Sum of the Squares of the First n Integers CHAPTER 10 THE TRIGONOMETRIC FUNCTIONS 1. Introduction 2. The Sinusoidal Functions 3. Some Preliminaries on Limits 4. Differentiation of the Trigonometric Functions 5. Integration of the Trigonometric Functions 6. Application of the Trigonometric Functions to Periodic Phenomena CHAPTER 11 THE INVERSE TRIGONOMETRIC FUNCTIONS 1. The Notion of an Inverse Function 2. The Inverse Trigonometric Functions 3. The Differentiation of the Inverse Trigonometric Functions 4. Integration Involving the Inverse Trigonometric Functions 5. Change of Variable in Integration 6. Time of Motion Under Gravitational Attraction CHAPTER 12 LOGARITHMIC AND EXPONENTIAL FUNCTIONS 1. Introduction 2. A Review of Logarithms 3. The Derived Functions of Logarithmic Functions 4. Exponential Functions and Their Derived Functions 5. Problems of Growth and Decay 6. Motion in One Direction in a Resisting Medium 7. Up and Down Motion in Resisting Media 8. Hyperbolic Functions 9. Logarithmic Differentiation CHAPTER 13 DIFFERENTIALS AND THE LAW OF THE MEAN 1. Differentials 2. The Mean Value Theorem of the Differential Calculus 3. Indeterminate Forms CHAPTER 14 FURTHER TECHNIQUES OF INTEGRATION 1. Introduction 2. Integration by Parts 3. Reduction Formulas 4. Integration by Partial Fractions 5. Integration by Substitution and Change of Variable 6. The Use of Tables CHAPTER 15 SOME GEOMETRIC USES OF THE DEFINITE INTEGRAL 1. Introduction 2. Volumes of Solids: The Cylindrical Element 3. Volumes of Solids: The Shell Game 4. Lengths of Arcs of Curves 5. Curvature 6. Areas of Surfaces of Revolution 7. Remarks on Approximating Figures CHAPTER 16 SOME PHYSICAL APPLICATIONS OF THE DEFINITE INTEGRAL 1. Introduction 2. The Calculation of Work 3. Applications to Economics 4. The Hanging Chain 5. Gravitational Attraction of Rods 6. Gravitational Attraction of Disks 7. Gravitational Attraction of Spheres CHAPTER 17 POLAR COORDINATES 1. The Polar Coordinate System 2. The Polar Coordinate Equations of Curves 3. The Polar Coordinate Equations of the Conic Sections 4. The Relation Between Rectangular and Polar Coordinates 5. The Derivative of a Polar Coordinate Function 6. Areas in Polar Coordinates 7. Arc Length in Polar Coordinates 8. Curvature in Polar Coordinates CHAPTER 18 RECTANGULAR PARAMETRIC EQUATIONS AND CURVILINEAR MOTION 1. Introduction 2. The Parametric Equations of a Curve 3. Some Additional Examples of Parametric Equations 4. Projectile Motion in a Vacuum 5. Slope, Area, Arc Length, and Curvature Derived from Parametric Equations 6. An Application of Arc Length 7. Velocity and Acceleration in Curvilinear Motion 8. Tangential and Normal Acceleration in Curvilinear Motion CHAPTER 19 POLAR PARAMETRIC EQUATIONS AND CURVILINEAR MOTION 1. Polar Parametric Equations 2. Velocity and Acceleration in the Polar Parametric Representation 3. Kepler’s Laws 4. Satellites and Projectiles CHAPTER 20 TAYLOR’S THEOREM AND INFINITE SERIES 1. The Need to Approximate Functions 2. The Approximation of Functions by Polynomials 3. Taylor’s Formula 4. Some Applications of Taylor’s Theorem 5. The Taylor Series 6. Infinite Series of Constant Terms 7. Tests for Convergence and Divergence 8. Absolute and Conditional Convergence 9. The Ratio Test 10. Power Series 11. Return to Taylor’s Series 12. Some Applications of Taylor’s Series 13. Series as Functions CHAPTER 21 FUNCTIONS OF TWO OR MORE VARIABLES AND THEIR GEOMETRIC REPRESENTATION 1. Functions of Two or More Variables 2. Basic Facts on Three-Dimensional Cartesian Coordinates 3. Equations of Planes 4. Equations of Straight Lines 5. Quadric or Second Degree Surfaces 6. Remarks on Further Work in Solid Analytic Geometry CHAPTER 22 PARTIAL DIFFERENTIATION 1. Functions of Two or More Variables 2. Partial Differentiation 3. The Geometrical Meaning of the Partial Derivatives 4. The Directional Derivative 5. The Chain Rule 6. Implicit Functions 7. Differentials 8. Maxima and Minima 9. Envelopes CHAPTER 23 MULTIPLE INTEGRALS 1. Introduction 2. Volume Under a Surface 3. Some Physical Applications of the Double Integral 4. The Double Integral 5. The Double Integral in Cylindrical Coordinates 6. Triple Integrals in Rectangular Coordinates 7. Triple Integrals in Cylindrical Coordinates 8. Triple Integrals in Spherical Coordinates 9. The Moment of Inertia of a Body CHAPTER 24 AN INTRODUCTION TO DIFFERENTIAL EQUATIONS 1. Introduction 2. First-Order Ordinary Differential Equations 3. Second-Order Linear Homogeneous Differential Equations 4. Second-Order Linear Non-Homogeneous Differential Equations CHAPTER 25 A RECONSIDERATION OF THE FOUNDATIONS 1. Introduction 2. The Concept of a Function 3. The Concept of the Limit of a Function 4. Some Theorems on Limits of Functions 5. Continuity and Differentiability 6. The Limit of a Sequence 7. Some Theorems on Limits of Sequences 8. The Definite Integral 9. Improper Integrals 10. The Fundamental Theorem of the Calculus 11. The Directions of Future Work