دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Koji Nishida, Shinichi Morooka, Michitsugu Mori, Yasuo Koizumi سری: JSME Series in Thermal and Nuclear Power Generation, 4 ISBN (شابک) : 0128213612, 9780128213612 ناشر: Elsevier سال نشر: 2023 تعداد صفحات: 597 [598] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 107 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Boiling Water Reactors به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راکتورهای آب جوش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راکتورهای آب جوش، جلد چهارم در سری JSME در مورد تولید انرژی حرارتی و هسته ای، آخرین تحقیقات را در این مرجع بسیار جامع گردآوری می کند که با تجزیه و تحلیل تاریخچه توسعه BWR شروع می شود و سپس به طراحی و نوآوری های کارخانه BWR می پردازد. خواننده از طریق ملاحظات مربوط به تمام ویژگیها و سیستمهای کارخانه BWR، از جمله داخلی راکتور، سیستمهای ایمنی و ابزار دقیق و کنترل نیروگاه راهنمایی میشود. جنبههای حرارتی-هیدرولیک در یک هسته BWR در کنار تجزیه و تحلیل سوخت، قبل از مقایسه آخرین فنآوریهای مدیریت حیات و نگهداری کارخانه BWR برای ارتقای ایمنی و شیوههای حفاظت در برابر تشعشع مورد بررسی قرار میگیرد. نویسندگان کتاب، دانش عمیق و تجربه عمیق خود را در این زمینه برای تجزیه و تحلیل نوآوری ها و BWR های نسل بعدی، با در نظر گرفتن چشم اندازهای انواع BWR های مختلف، مانند BWR های با تبدیل بالا، راکتورهای TRU-Burner و اقتصادی ترکیب می کنند. BWR های ساده شده نوشته شده توسط کارشناسانی از رهبران و پیشگامان تحقیقات هسته ای در انجمن مهندسین مکانیک ژاپن، شامل مثال های واقعی و مطالعات موردی از ژاپن، ایالات متحده و اروپا برای ارائه فرصت یادگیری عمیق تر با مزایای عملی است. بحث طراحی نیروگاه BWR، جنبههای حرارتی-هیدرولیک، هسته راکتور و مدیریت و نگهداری عمر نیروگاه را در یک منبع کامل بررسی میکند.
Boiling Water Reactors, Volume Four in the JSME Series on Thermal and Nuclear Power Generation compiles the latest research in this very comprehensive reference that begins with an analysis of the history of BWR development and then moves through BWR plant design and innovations. The reader is guided through considerations for all BWR plant features and systems, including reactor internals, safety systems and plant instrumentation and control. Thermal-hydraulic aspects within a BWR core are analyzed alongside fuel analysis before comparisons of the latest BWR plant life management and maintenance technologies to promote safety and radiation protection practices are covered. The book\'s authors combine their in-depth knowledge and depth of experience in the field to analyze innovations and Next Generation BWRs, considering prospects for a variety of different BWRs, such as High-Conversion-BWRs, TRU-Burner Reactors and Economic Simplified BWRs. Written by experts from the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits Considers societal impacts and sustainability concerns and goals throughout the discussion Explores BWR plant design, thermal-hydraulic aspects, the reactor core and plant life management and maintenance in one complete resource
Boiling Water Reactors Copyright Contributors About the Authors Preface of JSME series in Thermal and Nuclear Power Generation Preface Editing working group for volume 4: Boiling water reactors Abbreviations History of BWR development Nuclear energy development in Japan Primary energy supply Electric power generation Nuclear power generation Nuclear power generation legislation References Establishment and realization of BWR technologies Established stage Introduction Development of BWR by the Argonne National Laboratory in the United States Realizing stage [3,6-22] The early stage of GEs BWR development The further stage of GEs BWR development ABWR development with international cooperation Next BWR development References Improvement and standardization program in Japan Technology importation First improvement and standardization program Countermeasure for SCC [9,11,12,17,18] Improved primary containment vessel (improved PCV) Second improvement and standardization program [12,16] Improvement of fuel-core design and CRD Third improvement and standardization program Development program of ABWR [9,13,20-27] References Improvement of system and construction Reduction of the construction period of BWRs [1-3] Large block and module technologies Management by computer and information technologies Improvement of ABWR system and construction [4-8] Large block-module construction method All-weather construction method References Construction experience and operation performance Introduction period [1-4] Improvement and standardization programs of Japan [2-7] Recent status References Features of BWR plant Introduction Reference Reactor Overview Reactor system Reactor pressure vessel (RPV) Reactor internals Core and fuel Control rods and control rod drive Reactivity control system Control rod drive system Standby liquid control system Core monitoring system References Reactor coolant system and connectedsystems Overview Nuclear boiler system Main steam system Feedwater system Reactor recirculation system Reactor water cleanup system Residual heat removal system Leak detection system References Engineered safety features Overview Containment system Overview Primary containment vessel (PCV) Primary containment isolation system (PCIS) Primary containment vessel gas control systems Overview Atmospheric control system (AC) Flammability control system (FCS) Containment heat removal system Secondary containment Standby gas treatment system (SGTS) Emergency core cooling system Overview of ECCS Reactor core isolation cooling (RCIC) system High-pressure core flooder system Low-Pressure Flooder (LPFL) References Instrumentation and controls Introduction Overall architecture (example of ABWR) Major control systems and auxiliary control systems Major control systems Auxiliary control systems Safety systems Process computer system Human-machine interface Electric power Overview Function Configuration/main equipment (example of ABWR) Grid connection Transformers Auxiliary medium-voltage distribution buses Emergency diesel generators DC power supply system AC instrumentation power supply system Auxiliary system Overview Auxiliary system Fuel pool cooling and cleanup system [1] Reactor building cooling water system [2] Reactor building service water system [2] Turbine building cooling water system [2] Turbine building service water system [2] Makeup water condensate system [2] Instrument air system [2] High-pressure nitrogen gas supply system [2] Sampling system [2] Heating ventilating and air conditioning system [2] References Steam and power conversion systems Overview Steam and power conversion systems Turbine generator [1] Main steam system, auxiliary steam system, and turbine bypass system [1] Extraction steam system [1] Turbine gland steam system [1] Feedwater heater drain and vent system [1] Condenser [1] Circulating water system [1] Condensate and feedwater system [2] Off-gas system [2] References Nuclear reactor dynamics and thermal hydraulics of reactor core and fuel assembly Reactor internals and coolant flow paths in a reactor pressure vessel Unique basic characteristics of the BWR core Application of negative void reactivity BWR core configuration and basic design concept Reactor core support structure and other reactor internals Coolant flow paths and the BWR operating map Coolant flow paths Operating map References Advances of reactor core and fuel assembly High burnup fuel design Introduction Reliability improvement (1970s) Operational improvement Economical improvement-Step I fuel and core Economical improvement-Step II fuel and core Economical improvement-Step III fuel and core Summary References MOX fuel design Thermal-hydraulic design Thermal-hydraulic design basis of the reactor core Nuclear thermal-hydraulic stability Flow-induced vibration References Introduction Basic information about Pu Characteristics of Pu should be considered for utilization MOX fuel assembly design MOX core design Summary References Countermeasures and cause of fuel rodfailure Overview of fuel failures in BWRs Countermeasures and cause of fuel rod failure References Proving test on the thermal-hydraulicperformance of BWR fuel assembly Introduction Proving test on thermal-hydraulic performance of a BWR fuel assembly Void fraction measurement test for BWR fuel assembly [11-13] Development of thermal-hydraulic correlations based on the full-scale BWR fuel assemblies data References Advances in reactor core and fuel assemblyanalysis Nuclear analysis in BWRs 2D lattice calculation 3D core calculation analysis Validation with measurements References General reference for nuclear analysis Thermal-hydraulic system analysis code Thermal-hydraulic subchannel analysis code References Advances in containment vessel design Thermal hydraulics of severe accidents Introduction Initiation of fuel melt Progression of core melt Water-Zircaloy reaction accelerating fuel melt Melting relocation inside the RPV Melting jet structure and behaviors (from the RPV bottom to the PCV floor) FP aerosol behaviors [3,4] Accident management for BWR Summary of AM Defense in depth International event scale (INES) Selection of BWR AM measures Typical BWR core damage sequence In-vessel phenomena (from core melt to RPV bottom leak) Ex-vessel phenomena after RPV failure AMs for existing BWR AMs for the recently operated and planned plants (also with PWR) References Advances in safety analysis codeand safety systems Various BWR analysis codes Importance of nuclear analysis codes Best estimate code and evaluation model code Verification and validation (VandV) of simulation [3,4] BWR analysis code (EM code) [5] LOCA analysis code (BE code) SA progression analysis code Computational fluid dynamic (CFD) analysis code Large-scale test facility for code verification and obtaining correlations BWR safety systems for severe accident Passive safety concept Reinforcement for passive safety Lineup of passive safety systems References Fukushima Daiichi nuclear power plant accident and analysis evaluation Outline of accident Event progress and analysis evaluation at Unit 1 Event progress and analysis evaluation at Unit 2 Event progress and analysis evaluation at Unit 3 Hydrogen explosion at Unit 4 Avoiding severe accidents at Fukushima Daini NPS Overview of emergency response at Fukushima Daini NPS Fukushima Daini Unit 1 response and station behavior Response status at the time of tsunami arrival Reactor cooling water injection and PCV cooling RHR restoration and reactor cold shutdown Continuous ERC planning activities Lessons learned from Fukushima Daiichi accident Causes of severe accidents and countermeasures Measures for severe accidents installed in the United States and European NPPs Filtered containment venting system Special emergency heat removal system Tsunami protection New nuclear regulatory requirements in Japan New nuclear regulatory requirements Tsunami protection examples Tornado protection examples Example of compliance with new regulatory standards for PWRs that can be used as a reference for BWRs BWR NPS to be reviewed for new requirements or restarting Activities toward decommissioning Fukushima Daiichi Current status of reactors at Units 1 through 4 Finding contaminated water leak path for leak shutdown from PCV Isolation of groundwater flow from contaminated water Contaminated water management Preparation for fuel-debris removal Important lessons learned from Fukushima Daiichi NPS accident References BWR innovations Trans-uranic (TRU) burner reactor and reduced-moderation water reactor TRU burner reactor Introduction RBWR concept RBWR specifications RBWR core characteristics Progressive introduction of RBWR [10] References Reduced-moderation light water reactor Introduction [1-4] Research and development of the cost-reduced low-moderation spectrum BWR References Design innovation of BWR and high-pressureBWR Introduction Objective of LSBWR design Natural circulation core concept Conceptual design of long cycle core of LSBWR Examination of plant operating pressure and plant thermal efficiency Safety system and PCV concept Module fabrication and construction Ship hull structure for reactor building General arrangement of LSBWR and LLBWRs building design Construction methodology and evaluation Summary of design innovation of LSBWR, LLBWR, and high-pressure BWR References Power uprate in BWR Current status and trend of reactor power uprates Benefits and safety of constant rated reactor thermal power operation Possibilities and issues on constant rated reactor thermal power operation Current status of reactor power uprate with equipment modification Reactor thermal power and electric power Reactor power uprate with constant rated reactor thermal power operation Relationship between reactor thermal power and electric power outputs Issues and safety in constant rated reactor thermal power operation Experiences in BWR operation with constant rated reactor thermal power operation Power uprate with equipment modification Uprate by measurement uncertainty recapture High accuracy leading edge flowmeter (LEFM) for nuclear reactor feedwater measurement in MU Inevitable issues on the accuracy of the PF in high accuracy ultrasonic flowmeters and new-concept flowmeter pos ... Recent implementation and issues of uprates in the United States References Post-BT standard for BWR power plant Introduction Standard for the assessment of fuel integrity under anticipated operational occurrences The method for predicting the change of rod temperature during post-BT operation The criteria of fuel integrity after BT [9,10,13,20] References Core catcher Overview of core melt stabilization and cooling Core catcher of EU-ABWR Concept of core catcher Performance evaluation test Core catcher for the existing BWR Concept of core catcher Performance evaluation test References Steam injector Introduction Principle and application of SI SI analysis model Visualized fundamental tests Test apparatus and measurements Test results Application of steam jet-type SI to PCIS High-pressure tests and analysis Application of water jet type SI to RLP Confirmation of analysis method Scale-up examination of SI for application to RLP High-pressure tests using scale models Simplified feed water system by SI Scaled model tests of simplified feedwater system Analysis for improving SI-FWH Transient test result of the first stage Advantages of SI introduction to ABWR in volume and mass reduction Steam injector (SI) pump-up water system to refill pool for passive containment cooling isolation condenser (PCC/I ... Concept of SIPOWER Evaluation of PCC/IC pool water level transient by SIPOWER Full-scale mock-up test to confirm feasibility of SIPOWER Air-purge analysis in PCC/IC pool for SIPOWER Summary of SIPOWER References Built in upper internal control rod drives(CRDs) for ABWR-III Introduction of merits and technical tasks for internal CRD Plant concepts of ABWR-III Power devices for the internal CRD Magnet coupling power connector Magnet coupling signal connector Internal CRDs mechanism Latch mechanism for scram operation and lift a control rod Development of heatproof motor Ceramics coil radiation durability test Neutron flux at the internal CRD Evaluation of ABWR-III conditions Durability test of ball bearing Two-phase flow and structural integrity LOCA and pressure transient analysis Aseismic analysis results Summary References Index