ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Blast Injury Science and Engineering: A Guide for Clinicians and Researchers

دانلود کتاب علم و مهندسی آسیب انفجار: راهنمای پزشکان و محققان

Blast Injury Science and Engineering: A Guide for Clinicians and Researchers

مشخصات کتاب

Blast Injury Science and Engineering: A Guide for Clinicians and Researchers

ویرایش: [2 ed.] 
نویسندگان: , , , , ,   
سری:  
ISBN (شابک) : 3031103548, 9783031103544 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 513
[514] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Blast Injury Science and Engineering: A Guide for Clinicians and Researchers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علم و مهندسی آسیب انفجار: راهنمای پزشکان و محققان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب علم و مهندسی آسیب انفجار: راهنمای پزشکان و محققان



این ویرایش دوم به‌شدت تجدیدنظر شده، یک منبع چند رشته‌ای جامع درباره آسیب‌های ناشی از انفجار فراهم می‌کند. این شامل اطلاعات دقیق در مورد علوم پایه، مهندسی و پزشکی مرتبط با آسیب های ناشی از انفجار است. توصیف‌های واضح و آسان برای درک علوم پایه همراه با مطالعات موردی انواع مشکلات بالینی از جمله استخوان‌سازی هتروتوپیک، آسیب شنوایی، و آسیب مغزی تروماتیک است که خواننده را قادر می‌سازد تا درک عمیقی از نحوه به کارگیری صحیح علم مربوطه در آن ایجاد کند. عمل بالینی آنها استفاده از پروتز، ارتز و استئواینتگراسیون در توانبخشی نیز پوشش داده شده است.

علوم و مهندسی آسیب انفجار: راهنمای پزشکان و پژوهشگران یک متن ارزشمند بین رشته‌ای است که عمدتاً معطوف به متخصصان پزشکی بالینی و کارآموزانی است که به دنبال ایجاد درک کاملی از مکانیسم های آسیب و آخرین تکنیک های درمانی. علاوه بر این، این منبع برای افرادی در زمینه‌های دیگری که کارشان حول محور علم آسیب انفجار است، مانند محققان کاهش آسیب، دانشمندان نظامی و مهندسان استفاده می‌شود.

توضیحاتی درمورد کتاب به خارجی

This heavily revised second edition provides a comprehensive multi-disciplinary resource on blast injuries. It features detailed information on the basic science, engineering, and medicine associated with blast injuries. Clear, easy to understand descriptions of the basic science are accompanied by case studies of a variety of clinical problems including heterotopic ossification, hearing damage, and traumatic brain injury, enabling the reader to develop a deep understanding of how to appropriately apply the relevant science into their clinical practice. The use of prosthetics, orthotics and osseointegration in rehabilitation is also covered.  

Blast Injury Science and Engineering: A Guide for Clinicians and Researchers is a valuable interdisciplinary text primarily focused towards clinical medical professionals and trainees seeking to develop a thorough understanding of injury mechanisms, and the latest treatment techniques. In addition, this resource is of use to individuals in other fields whose work centres around blast injury science such as injury mitigation researchers, military scientists and engineers.


فهرست مطالب

Foreword
Preface
Contents
Part I: Basic Science and Engineering
	1: Section Overview
	2: The Fundamentals of Blast Physics
		2.1	 Explosives and Blast: A Kinetic Effect
		2.2	 Explosive Systems: The Explosive Train
		2.3	 Energy Levels and Energy Distribution
		2.4	 Formation and Velocity of Fragments
		2.5	 Shock and Stress Transmission
			2.5.1	 Wave Type
			2.5.2	 Magnitude of the Wave
			2.5.3	 Impedance: A Property of the Material
			2.5.4	 Wave Transmission Across Interfaces
			2.5.5	 The Solid–Air Interface
		2.6	 Blast Waves
			2.6.1	 Change in Impedance of a Gas in a Blast Wave
			2.6.2	 Reflected Waves
			2.6.3	 Temperature Rise
		2.7	 Comparing Explosive Scenarios: Scaled Distance and TNT Equivalence
		2.8	 The Three-Dimensional World and the Physical Basis of Blast and Fragment Injury
		2.9	 Summary/Conclusion
		References
			Further Reading
	3: Biomechanics in Blast
		3.1	 Overview
		3.2	 Terminology in Biomechanics
			3.2.1	 Biomechanics of Motion
			3.2.2	 Forces
			3.2.3	 Newton’s Laws and Kinetics
			3.2.4	 Functional Anatomy
		3.3	 Biomechanics of Force Transmission
			3.3.1	 Muscle Forces
			3.3.2	 Forces in Joints
		3.4	 Bringing it All Together: Forensic Biomechanics of Blast
		References
			Further Reading
	4: Behaviour of Materials
		4.1	 Introduction
		4.2	 Materials
			4.2.1	 Metals
				4.2.1.1	 Microstructure
				4.2.1.2	 Imperfections
				4.2.1.3	 Hardening
				4.2.1.4	 Main Industrial Alloys
					Steel
					Cast Iron
					Copper Alloys
					Alloys of Light Metals
			4.2.2	 Ceramics
			4.2.3	 Polymers
				4.2.3.1	 Thermoplastics
				4.2.3.2	 Thermosets
				4.2.3.3	 Elastomers or Rubbers
			4.2.4	 Composites
			4.2.5	 Biological Materials
				4.2.5.1	 Biological Fluids
					Protoplasm
					Mucus
					Synovial Fluid
				4.2.5.2	 Biological Solids
					Actin and Elastin
					Collagen
		4.3	 Stress Analysis
			4.3.1	 Introduction: General Terms
			4.3.2	 Stress and Strain Tensors
				4.3.2.1	 Stress
				4.3.2.2	 Strain
			4.3.3	 Stress States
			4.3.4	 Engineering Properties of Materials
		4.4	 Beyond Linear Elasticity
			4.4.1	 Hyperelasticity
			4.4.2	 Viscoelasticity
			4.4.3	 Plasticity and Failure
				4.4.3.1	 Plasticity
				4.4.3.2	 Failure
				4.4.3.3	 Equations of State
				4.4.3.4	 Shock Loading
				4.4.3.5	 Compaction and Unloading
		4.5	 Dynamic Loading
			4.5.1	 Elastodynamics: The Wave Equation
			4.5.2	 Design for Strength and Endurance: Fatigue Strength
				4.5.2.1	 Design of Parts and Structures
				4.5.2.2	 Fatigue
		4.6	 Summary
		Further Reading
	5: Fundamentals of Computational Modelling
		5.1	 Introduction
		5.2	 Computational Continuum Mechanics: Overview
		5.3	 Material, Spatial and Other Descriptions
			5.3.1	 Lagrangian Representation
			5.3.2	 Eulerian Representation
			5.3.3	 Other Forms of Spatial Integration
		5.4	 Implicit Finite Element Analysis
			5.4.1	 Meshing/Discretisation
			5.4.2	 Shape Functions
			5.4.3	 Strains and Stresses / Constitutive Laws (See Chap. 4 for More Details)
			5.4.4	 Formulation
				5.4.4.1	 Internal and External Energy: Principle of Virtual Work
				5.4.4.2	 Assemble
				5.4.4.3	 Solve
			5.4.5	 Evaluation of the Stiffness Matrix: Numerical Quadrature
				5.4.5.1	 Mapping of Elements from the s- to the x-Space: The Jacobian
			5.4.6	 Recover Strain and Stress
			5.4.7	 Overview of the Linear Static FE Method
			5.4.8	 Non-linear Finite Element Formulation
		5.5	 Explicit FEA for Dynamic Systems
			5.5.1	 The Single Degree of Freedom System (SDOF)
				5.5.1.1	 Formulation
				5.5.1.2	 Closed-Form Solution
				5.5.1.3	 Numerical Solution with Explicit Time-Stepping: The Linear Acceleration Method
			5.5.2	 Explicit FE and Hydrocode Techniques
		5.6	 Verification, Validation and Sensitivity Studies in FEA
			5.6.1	 Verification
			5.6.2	 Validation
			5.6.3	 Sensitivity / Uncertainty Quantification
		5.7	 Conclusion
		Further Reading
	6: Fundamentals of Blast Biology and Physiology
		6.1	 Basic Cellular Biology
			6.1.1	 Nucleus
			6.1.2	 Cytoplasm
			6.1.3	 Cell Membrane
		6.2	 The Biological Hierarchy
		6.3	 Understanding the Cellular Effect of Blast
			6.3.1	 The Effect of Blast on the Cell Membrane
			6.3.2	 The Effect of Blast on Cytoplasm
			6.3.3	 The Effect of Blast on the Nucleus
		6.4	 Whole Cell Response
			6.4.1	 Cell Viability
			6.4.2	 Mechanotransductive Pathways Within the Cell
			6.4.3	 Cell Interactions with Its Environment: The Inside-Out—Outside-In Concept
		6.5	 Summary
		References
Part II: Weapons Effects and Forensics
	7: Section Overview
	8: Weapon Construction and Function
		8.1	 Introduction
		8.2	 Small Arms Ammunition
		8.3	 Mortars
		8.4	 Grenades
		8.5	 Artillery Shells
		8.6	 Fuzes
		8.7	 Munition Components
		8.8	 What is an IED?
		8.9	 IED Components
			8.9.1	 Main Charge
			8.9.2	 Container
			8.9.3	 Switch
			8.9.4	 Power Source
			8.9.5	 Initiator
			8.9.6	 Enhancements
		8.10	 Using IEDs to Attack Personnel
		8.11	 Summary
	9: Blast Injury Mechanism
		9.1	 Blast Injury Mechanisms
			9.1.1	 Overview
			9.1.2	 Primary Blast Injury
			9.1.3	 Secondary Blast Injury
			9.1.4	 Tertiary Blast Injury
			9.1.5	 Quaternary Blast Effects
			9.1.6	 Cause of Death After Explosions
		9.2	 Weapons
			9.2.1	 Blast Weapons
			9.2.2	 Fragmentation Weapons
			9.2.3	 Blast and Fragmentation Effects
			9.2.4	 Mines
			9.2.5	 Anti-Personnel Devices
			9.2.6	 Anti-Vehicle Devices
			9.2.7	 Improvised Explosive Device
		9.3	 Environmental Factors
			9.3.1	 Open
			9.3.2	 Confined Spaces
			9.3.3	 Structural Collapse
			9.3.4	 Deck Slap
		9.4	 Suicide Bombings
		9.5	 Summary
		References
	10: Analysis of Explosive Events
		10.1	 The Examination of Post-Blast Scenes
			10.1.1	 Introduction
			10.1.2	 Coordination of the Post-Blast Scene
			10.1.3	 Optimal Capture of Forensic Evidence
			10.1.4	 Access Control and Cordoning
			10.1.5	 Explosives, Seat of Explosion, Device Identification
			10.1.6	 Zoning and Detailed Recording
			10.1.7	 Forensic Intelligence and Evidence
			10.1.8	 Conclusion
		10.2	 Case Study 1: Modelling the Blast Environment and Relating this to Clinical Injury: Experience From the 7/7 Inquest
			10.2.1	 Introduction
			10.2.2	 Approach
				10.2.2.1	 Work Strands
				10.2.2.2	 Model Design and Risk Reduction
				10.2.2.3	 Resources
				10.2.2.4	 Challenges: Quality of Information
			10.2.3	 Conclusion
		10.3	 Case Study 2: Injury Mechanism and Potential Survivability Following the 1974 Birmingham Pub Bombings
			10.3.1	 Introduction
			10.3.2	 Overview
			10.3.3	 Approach
				10.3.3.1	 Multidisciplinary Team Approach
				10.3.3.2	 Challenges: Missing Clinical Information
			10.3.4	 Findings
			10.3.5	 Conclusions
		Annex 1
		References
	11: Injury Scoring Systems
		11.1	 Introduction
		11.2	 Why Score Injury?
		11.3	 Types of Injury Scoring Systems
			11.3.1	 Physiological Scores
			11.3.2	 Anatomical
			11.3.3	 Combined Scores
		11.4	 Limitations of Contemporary Current Scores
			11.4.1	 Military Specific Scores
			11.4.2	 The Ideal Scoring System?
		11.5	 Conclusions
		References
Part III: Clinical Problems
	12: Section Overview
		Reference
	13: The Immune and Inflammatory Response to Major Traumatic Injury
		13.1	 Introduction
		13.2	 Redefining the SIRS:CARS Paradigm
		13.3	 Mitochondrial-Derived Damage Associated Molecular Patterns: Therapeutic Targets for the Treatment of Post-Injury Immune Dysfunction?
		13.4	 Does Major Traumatic Injury Drive Accelerated Ageing of the Immune System?
		13.5	 The Post-Injury Immune Response as an Indicator of Patient Outcome
		13.6	 Future Directions
		References
	14: Foot and Ankle Blast Injuries
		14.1	 Introduction
		14.2	 The Issue
		14.3	 Amputation or Limb Salvage
		14.4	 Improving Outcomes Following Limb Salvage
		14.5	 Future Research
		References
	15: Traumatic Amputation
		15.1	 The Issue
		15.2	 Limitations of Current Injury Mechanism Theory
		15.3	 The Study
		15.4	 The Outcomes
		15.5	 Further Laboratory Studies
		15.6	 Association to Pelvic Blast Injury
		References
	16: Pelvic Blast Injury
		16.1	 Introduction
		16.2	 UK Military Experience
		16.3	 Mechanism of Injury
		16.4	 Pelvic Fracture Classification
		16.5	 Bleeding Following Pelvic Trauma
		16.6	 Injury Mitigation
		16.7	 Research Direction of the Centre for Blast Injury Studies
		16.8	 Conclusion
		References
	17: Blast Injury to the Spine
		17.1	 Introduction
		17.2	 Injury Patterns
			17.2.1	 Mounted Blast Injury Patterns
			17.2.2	 Dismounted Blast Injury Patterns
		17.3	 Mechanism of Blast Spinal Injuries
			17.3.1	 Mounted
			17.3.2	 Dismounted
		17.4	 Markers for Fatality
		17.5	 Associated Injuries
		17.6	 Outcomes
		17.7	 Summary
		References
	18: Primary Blast Lung Injury
		18.1	 Introduction
		18.2	 Epidemiology
		18.3	 Pathophysiology
		18.4	 Diagnosis
		18.5	 Acute Respiratory Distress Syndrome (ARDS)
		18.6	 Management
		18.7	 Future Therapy
		References
	19: Blast Injuries of the Eye
		19.1	 Primary Ocular Blast Injuries
		19.2	 Secondary Blast Injuries
		19.3	 Closed Globe Injuries
		19.4	 Traumatic Retinal Tears and Detachments
		19.5	 Tertiary Blast Injuries
		19.6	 Quaternary Blast Injury
		19.7	 Quinary Blast Injuries
		19.8	 Summary and Incidence
		References
	20: Hearing Damage Through Blast
		20.1	 Introduction
		20.2	 Blast Damage to the Outer Ear
		20.3	 Middle Ear Damage
		20.4	 Blast-Induced Impairment of the Inner Ear
		20.5	 Damage to the Central Nervous System
		20.6	 Conclusion
		References
	21: Torso injury from Under Vehicle Blast
		21.1	 Introduction
		21.2	 The Clinical Problem
		21.3	 Pattern of Injury
		21.4	 Mechanism of Injury
		21.5	 Biomechanics of Under Vehicle Blast Torso Injury
		21.6	 Injury Tolerance
		21.7	 The Future
		References
	22: Blast Traumatic Brain Injury
		22.1	 Introduction and Background
		22.2	 The Clinical Problem
			22.2.1	 Minor Blast Traumatic Brain Injury
			22.2.2	 Moderate to Severe Blast Traumatic Brain Injury
		22.3	 Current Research/Management
			22.3.1	 Minor Blast Traumatic Brain Injury
			22.3.2	 Moderate to Severe Blast Traumatic Brain Injury
		22.4	 Future Focus
			22.4.1	 Minor Blast Traumatic Brain Injury
			22.4.2	 Moderate to Severe Blast Traumatic Brain Injury
		References
	23: Heterotopic Ossification After Blast Injury
		23.1	 Introduction/Background
			23.1.1	 Background
			23.1.2	 HO After Blast Injury
			23.1.3	 Mechanism of Formation
			23.1.4	 Cellular and Genetic Mechanisms
		23.2	 The Clinical Problem and Current Management
			23.2.1	 Clinical Burden
			23.2.2	 Barrier to Rehabilitation
			23.2.3	 Lack of Prophylaxis
			23.2.4	 Surgical Management
		23.3	 Current Research
			23.3.1	 Novel Preventative Therapies
			23.3.2	 Risk Stratification and Early Detection
			23.3.3	 Animal Modelling
			23.3.4	 Direct Skeletal Fixation/Intraosseous Fixation of Prostheses
		23.4	 Future Research Focus
		References
	24: Pathological Cascades Leading to Heterotopic Ossification Following Blast Injury
		24.1	 Introduction
		24.2	 Key Molecular Markers of Heterotopic Ossification
		24.3	 Signalling Pathways in Acquired Heterotopic Ossification
		24.4	 Discussion and Future Therapeutic Targets
		References
	25: Fracture Non-Union After Blast Injury
		25.1	 Introduction
		25.2	 The Clinical Problem
		25.3	 Current Management
			25.3.1	 Nonsurgical Management of Non-Union
			25.3.2	 Surgical Management of the Non-Union
		25.4	 Future Research Foci and Needs
			25.4.1	 Mechanical Environment Enhancement
			25.4.2	 Biological Environment Enhancement
		References
	26: Orthopaedic-Related Infections Resulting from Blast Trauma
		26.1	 Introduction
		26.2	 Clinical Problem
			26.2.1	 Osteomyelitis
			26.2.2	 Fracture Non-Union
			26.2.3	 Late Amputation
			26.2.4	 Organisms
		26.3	 Current Treatment and Management Strategies
			26.3.1	 Antibiotics
			26.3.2	 Irrigation
			26.3.3	 Debridement
			26.3.4	 Compartment Syndrome
			26.3.5	 Skeletal Fixation
			26.3.6	 Negative Pressure Wound Therapy
		26.4	 Future Research Directions
			26.4.1	 Clinical
			26.4.2	 PreClinical
			26.4.3	 Novel Therapies
		26.5	 Summary
		References
Part IV: Modelling and Mitigation
	27: Section Overview
	28: In Silico Models
		28.1	 Introduction
		28.2	 Axelsson Model for Blast Loading of the Chest Wall
		28.3	 Projectile Flight and Penetration
		28.4	 Fragment Penetration to the Neck
		28.5	 The Lower Extremity in Tertiary Blast
		28.6	 Defining the Parameters of Energy-Attenuating Vehicle Seats
		28.7	 Conclusion
		References
	29: In-Silico Modelling of Blast-Induced Heterotopic Ossification
		29.1	 Background
		29.2	 The Effect of the Mechanical Environment on HO
		29.3	 Computational Bone Remodelling Applied to Heterotopic Ossification
			29.3.1	 Computational Bone Remodelling
			29.3.2	 Application to Heterotopic Ossification
		29.4	 Simulating the Formation of Characteristic HO Morphologies
		29.5	 Discussion and Future Perspective
		References
	30: Physical Experimental Apparatus for Modelling Blast
		30.1	 Introduction
		30.2	 Primary Blast
			30.2.1	 The Shock Tube
			30.2.2	 The Split-Hopkinson Pressure Bar (SHPB)
			30.2.3	 Other Devices
		30.3	 Secondary Blast
			30.3.1	 Gas Gun
			30.3.2	 Other Devices
		30.4	 Tertiary Blast
			30.4.1	 Drop Towers
			30.4.2	 Solid-Blast Injury Simulators
		30.5	 Conclusions
		References
	31: In Vitro Models of Primary Blast: Organ Models
		31.1	 Introduction
		31.2	 Brain
		31.3	 Lung
		31.4	 Abdominal Organs
		31.5	 Eye
		31.6	 Summary
		References
	32: Modelling Blast Brain Injury
		32.1	 In Silico Models
		32.2	 Ex Vivo Models
		32.3	 In Vitro Models
		32.4	 In Vivo Animal Models
			32.4.1	 Animal Species
			32.4.2	 Generation of Overpressure Waves
				32.4.2.1	 Free-Field Explosives
				32.4.2.2	 Blast Tubes
				32.4.2.3	 Shock Tubes
			32.4.3	 Critical Aspects
				32.4.3.1	 Anaesthesia and Analgesia
				32.4.3.2	 Pressure Wave Characteristics
				32.4.3.3	 Animal Head Orientation Relative to the Direction of the Pressure Wave
				32.4.3.4	 Head Mobile Versus Head Restrained
				32.4.3.5	 Head Only Blast Exposure (Thorax Protection) Versus Whole Body Blast Exposure (no Thorax Protection)
				32.4.3.6	 Single Blast Versus Repeated Blasts
				32.4.3.7	 Outcomes
		32.5	 Conclusion
		References
	33: Post Mortem Human Tissue for Primary, Secondary and Tertiary Blast Injury
		33.1	 Benefits of Using PMHS
		33.2	 Issues with Using PMHS
		33.3	 Examples of Using PMHS for Blast Injury Research
		33.4	 Conclusion
		References
	34: Surrogates: Anthropometric Test Devices
		34.1	 Introduction
		34.2	 A Brief History of ATDs
		34.3	 ATDs Used to Assess Occupant Safety in Blast
			34.3.1	 The Hybrid III ATD
			34.3.2	 The Eurosid-2RE ATD (ES-2re)
			34.3.3	 The MIL-lx
			34.3.4	 Warrior Injury Assessment Manikin
			34.3.5	 Frangible, Single-Use Surrogates
		34.4	 Injury Risk Assessment
		34.5	 Summary
		References
			Further Reading
	35: Physical Models for Assessing Primary and Secondary Blast Effects
		35.1	 Introduction
		35.2	 Physical Models for Primary Blast Experiments
		35.3	 Physical Models for Assessing the Effectiveness of Secondary Blast
			35.3.1	 Single Fragment Testing
			35.3.2	 Combined Blast/Fragmentation Investigations
		References
	36: Tertiary Blast Injury and its Protection
		36.1	 Introduction
		36.2	 Vehicles
		36.3	 Infrastructure
		References
	37: Optimising the Medical Coverage of Personal Armour Systems for UK Armed Forces Personnel
		37.1	 Introduction
			37.1.1	 Essential and Desirable Medical Coverage
			37.1.2	 Vulnerable Anatomical Structures
		37.2	 Medical Coverage Definitions by Body Region
			37.2.1	 Head and Face
			37.2.2	 Neck
			37.2.3	 Torso
			37.2.4	 Upper Arm
			37.2.5	 Pelvis and Thigh
		37.3	 Computerised Comparisons in the Anatomical Coverage Provided by Different Armour Designs
		37.4	 Coverage of Personal Armour Issued to UK Armed Forces Personnel
			37.4.1	 Coverage Provided by Hard Plates as Shown in COAT
			37.4.2	 Medical Coverage Provided by the VIRTUS Helmet
			37.4.3	 Quantifying the Coverage Provided by Side Plates
			37.4.4	 Optimising the Coverage of Arm Protection
		37.5	 Conclusions
		References
Part V: Rehabilitation
	38: Section Overview
	39: Survive to Thrive
		39.1	 An Anecdote of Adjustment
		39.2	 Short Biography
	40: Rehabilitation Lessons from a Decade of Conflict
		40.1	 The Rehabilitation Challenge
		40.2	 Principles of Military Rehabilitation
			40.2.1	 Early Assessment
			40.2.2	 Exercise-Based Rehabilitation
			40.2.3	 Cross-Disciplinary Working: The Interdisciplinary Team
			40.2.4	 Active Case Management
			40.2.5	 Rapid Access to Specialist Opinion/Investigations
		40.3	 Hospital-Based Rehabilitation of the Blast-Injured Amputee
			40.3.1	 Early Rehabilitation in Critical Care
			40.3.2	 Early Function and Progress to Ward-Based Rehabilitation
			40.3.3	 The Rehabilitation Coordinating Officer
			40.3.4	 Innovating Practice
			40.3.5	 Pain Management
		40.4	 Military Rehabilitation of the Blast-Injured Amputee
			40.4.1	 Measuring Progress
			40.4.2	 Periodic Intensive Residential Rehabilitation (PIRR)
			40.4.3	 Prosthetics: Practical Lessons Learned
			40.4.4	 Prosthetic Rehabilitation Programme
				40.4.4.1	 Bilateral Amputees
				40.4.4.2	 Unilateral Amputees
				40.4.4.3	 Other Considerations
				40.4.4.4	 Osseointegration/Direct Skeletal Fixation (DSF)
			40.4.5	 The Challenge of Transition
		40.5	 Conclusion
		References
	41: Prosthetics and Innovation
		41.1	 Introduction
		41.2	 Prosthetic Hardware
			41.2.1	 Upper Limb Prostheses
			41.2.2	 Lower Limb Prosthetics
		41.3	 Prosthetic Control
			41.3.1	 Body-Powered Systems
			41.3.2	 Commercial Actuated Prosthesis Control
		41.4	 Research Oriented Actuated Prosthesis Control
			41.4.1	 Regression-Based Continuous Control
			41.4.2	 Control Systems Based on Invasive EMG Systems
			41.4.3	 Alternative Control Approaches
		41.5	 Sensory Feedback
			41.5.1	 Non-invasive Sensory Feedback
			41.5.2	 Invasive Sensory Feedback
		41.6	 Surgical Techniques for Improved Prosthetic Experience
		41.7	 Conclusion and Future Outlook
		References
	42: Orthotics
		42.1	 Introduction
		42.2	 Device Type
		42.3	 Custom Dynamic Orthoses
		42.4	 Design Considerations
		42.5	 Training, Evaluation, and Outcomes
		42.6	 Summary
		References
	43: Sockets and Residuum Health
		43.1	 Introduction
		43.2	 Prosthetic Devices
			43.2.1	 Transtibial
			43.2.2	 Transfemoral
			43.2.3	 Through-Knee (Knee Disarticulation)
			43.2.4	 Socket Construction
			43.2.5	 Liners
			43.2.6	 Socket Suspension
				43.2.6.1	 Cuff Mechanisms
				43.2.6.2	 Harness Suspension
				43.2.6.3	 Sub-Atmospheric Pressure Suspension
					Suction
					Vacuum-Assisted Suspension
			43.2.7	 Socks
			43.2.8	 Orientation/Alignment
			43.2.9	 Components
		43.3	 Overview of Amputee Issues
			43.3.1	 Fit and Pressure Distribution
			43.3.2	 Volume Fluctuation
			43.3.3	 Temperature and Thermoregulation
			43.3.4	 Skin Conditions and Infection
			43.3.5	 Other Musculoskeletal Pathologies Related to the Socket
		43.4	 Understanding and Optimising Socket Fit
			43.4.1	 Qualitative Assessment
			43.4.2	 Computational Methods and Socket Fit
			43.4.3	 Sensing Methods
				43.4.3.1	 Strain Gauges
				43.4.3.2	 Piezoresistive Sensors
				43.4.3.3	 Piezoelectric Sensors
				43.4.3.4	 Capacitive Sensors
				43.4.3.5	 Optical Fibre Sensors
				43.4.3.6	 Optoelectronic Sensors
				43.4.3.7	 Sensor Mounting Techniques
			43.4.4	 Optimisation of Interfacial Stresses
			43.4.5	 Accounting for Volume Fluctuation
			43.4.6	 Heat Management
			43.4.7	 Surgical Methods
				43.4.7.1	 Transtibial
				43.4.7.2	 Transfemoral
		43.5	 Summary
		References
	44: Bone Health in Lower-Limb Amputees
		44.1	 Introduction to the Mechanics of Bone Structure and Prediction in Finite Element Modelling
		44.2	 Bone Changes in Amputees
			44.2.1	 General Trends of Decreased Bone Density
			44.2.2	 Mechanisms of Bone Loss
			44.2.3	 Aetiology of Bone Loss in Amputees
		44.3	 Clinical Study on Bone Changes in Amputees
		44.4	 Computational Modelling of Stress and Strain in Amputees
		44.5	 Discussion
		References
	45: Musculoskeletal Health After Blast Injury
		45.1	 Introduction
		45.2	 Prevalence of Joint Health and Secondary Injuries
		45.3	 The Relationship Between Movement Biomechanics and Joint Health
			45.3.1	 Lower Limb Joint Mechanics and Osteoarthritis
			45.3.2	 Low-Back Mechanics and Pain
		45.4	 Implications for Rehabilitation and Future Directions
		45.5	 Conclusion
		References
	46: Biomechanics of Blast Rehabilitation
		46.1	 Loading the Musculoskeletal System
			46.1.1	 Musculoskeletal Capacity
		46.2	 Computational Modelling to Analyse Musculoskeletal Loading
		46.3	 Examples
			46.3.1	 Biomechanics and Osteoarthritis in Amputees
			46.3.2	 Optimising Prosthetic Parameters
			46.3.3	 Functional Electrical Stimulation Interventions
		46.4	 Conclusion
		References
	47: Pain
		47.1	 Pathophysiology
			47.1.1	 Introduction
			47.1.2	 Definitions
			47.1.3	 Acute Versus Chronic Pain
			47.1.4	 The Role of Nervous System Inflammation
			47.1.5	 Peripheral Nerve Injury (PNI)
			47.1.6	 Phantom Limb Pain (PLP)
			47.1.7	 A Current Conceptual Model of PNI and NeuP
			47.1.8	 Patient Assessment
			47.1.9	 Clinical Correlates
		47.2	 Treatment
			47.2.1	 Introduction
			47.2.2	 Immediate Response
			47.2.3	 Perioperative Care
			47.2.4	 Chronic Pain and Rehabilitation
				47.2.4.1	 Introduction
				47.2.4.2	 Treatment
				47.2.4.3	 Comorbidities
				47.2.4.4	 Prognosis
		47.3	 Summary
		References
Glossary
Index




نظرات کاربران