دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Anthony M. J. Bull, Jon Clasper, Peter F. Mahoney, Alison H. McGregor, Spyros D. Masouros, Arul Ramasamy سری: ISBN (شابک) : 3031103548, 9783031103544 ناشر: Springer سال نشر: 2023 تعداد صفحات: 513 [514] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 Mb
در صورت تبدیل فایل کتاب Blast Injury Science and Engineering: A Guide for Clinicians and Researchers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم و مهندسی آسیب انفجار: راهنمای پزشکان و محققان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش دوم بهشدت تجدیدنظر شده، یک منبع چند رشتهای جامع درباره آسیبهای ناشی از انفجار فراهم میکند. این شامل اطلاعات دقیق در مورد علوم پایه، مهندسی و پزشکی مرتبط با آسیب های ناشی از انفجار است. توصیفهای واضح و آسان برای درک علوم پایه همراه با مطالعات موردی انواع مشکلات بالینی از جمله استخوانسازی هتروتوپیک، آسیب شنوایی، و آسیب مغزی تروماتیک است که خواننده را قادر میسازد تا درک عمیقی از نحوه به کارگیری صحیح علم مربوطه در آن ایجاد کند. عمل بالینی آنها استفاده از پروتز، ارتز و استئواینتگراسیون در توانبخشی نیز پوشش داده شده است.
علوم و مهندسی آسیب انفجار: راهنمای پزشکان و پژوهشگران یک متن ارزشمند بین رشتهای است که عمدتاً معطوف به متخصصان پزشکی بالینی و کارآموزانی است که به دنبال ایجاد درک کاملی از مکانیسم های آسیب و آخرین تکنیک های درمانی. علاوه بر این، این منبع برای افرادی در زمینههای دیگری که کارشان حول محور علم آسیب انفجار است، مانند محققان کاهش آسیب، دانشمندان نظامی و مهندسان استفاده میشود.This heavily revised second edition provides a comprehensive multi-disciplinary resource on blast injuries. It features detailed information on the basic science, engineering, and medicine associated with blast injuries. Clear, easy to understand descriptions of the basic science are accompanied by case studies of a variety of clinical problems including heterotopic ossification, hearing damage, and traumatic brain injury, enabling the reader to develop a deep understanding of how to appropriately apply the relevant science into their clinical practice. The use of prosthetics, orthotics and osseointegration in rehabilitation is also covered.
Blast Injury Science and Engineering: A Guide for Clinicians and Researchers is a valuable interdisciplinary text primarily focused towards clinical medical professionals and trainees seeking to develop a thorough understanding of injury mechanisms, and the latest treatment techniques. In addition, this resource is of use to individuals in other fields whose work centres around blast injury science such as injury mitigation researchers, military scientists and engineers.Foreword Preface Contents Part I: Basic Science and Engineering 1: Section Overview 2: The Fundamentals of Blast Physics 2.1 Explosives and Blast: A Kinetic Effect 2.2 Explosive Systems: The Explosive Train 2.3 Energy Levels and Energy Distribution 2.4 Formation and Velocity of Fragments 2.5 Shock and Stress Transmission 2.5.1 Wave Type 2.5.2 Magnitude of the Wave 2.5.3 Impedance: A Property of the Material 2.5.4 Wave Transmission Across Interfaces 2.5.5 The Solid–Air Interface 2.6 Blast Waves 2.6.1 Change in Impedance of a Gas in a Blast Wave 2.6.2 Reflected Waves 2.6.3 Temperature Rise 2.7 Comparing Explosive Scenarios: Scaled Distance and TNT Equivalence 2.8 The Three-Dimensional World and the Physical Basis of Blast and Fragment Injury 2.9 Summary/Conclusion References Further Reading 3: Biomechanics in Blast 3.1 Overview 3.2 Terminology in Biomechanics 3.2.1 Biomechanics of Motion 3.2.2 Forces 3.2.3 Newton’s Laws and Kinetics 3.2.4 Functional Anatomy 3.3 Biomechanics of Force Transmission 3.3.1 Muscle Forces 3.3.2 Forces in Joints 3.4 Bringing it All Together: Forensic Biomechanics of Blast References Further Reading 4: Behaviour of Materials 4.1 Introduction 4.2 Materials 4.2.1 Metals 4.2.1.1 Microstructure 4.2.1.2 Imperfections 4.2.1.3 Hardening 4.2.1.4 Main Industrial Alloys Steel Cast Iron Copper Alloys Alloys of Light Metals 4.2.2 Ceramics 4.2.3 Polymers 4.2.3.1 Thermoplastics 4.2.3.2 Thermosets 4.2.3.3 Elastomers or Rubbers 4.2.4 Composites 4.2.5 Biological Materials 4.2.5.1 Biological Fluids Protoplasm Mucus Synovial Fluid 4.2.5.2 Biological Solids Actin and Elastin Collagen 4.3 Stress Analysis 4.3.1 Introduction: General Terms 4.3.2 Stress and Strain Tensors 4.3.2.1 Stress 4.3.2.2 Strain 4.3.3 Stress States 4.3.4 Engineering Properties of Materials 4.4 Beyond Linear Elasticity 4.4.1 Hyperelasticity 4.4.2 Viscoelasticity 4.4.3 Plasticity and Failure 4.4.3.1 Plasticity 4.4.3.2 Failure 4.4.3.3 Equations of State 4.4.3.4 Shock Loading 4.4.3.5 Compaction and Unloading 4.5 Dynamic Loading 4.5.1 Elastodynamics: The Wave Equation 4.5.2 Design for Strength and Endurance: Fatigue Strength 4.5.2.1 Design of Parts and Structures 4.5.2.2 Fatigue 4.6 Summary Further Reading 5: Fundamentals of Computational Modelling 5.1 Introduction 5.2 Computational Continuum Mechanics: Overview 5.3 Material, Spatial and Other Descriptions 5.3.1 Lagrangian Representation 5.3.2 Eulerian Representation 5.3.3 Other Forms of Spatial Integration 5.4 Implicit Finite Element Analysis 5.4.1 Meshing/Discretisation 5.4.2 Shape Functions 5.4.3 Strains and Stresses / Constitutive Laws (See Chap. 4 for More Details) 5.4.4 Formulation 5.4.4.1 Internal and External Energy: Principle of Virtual Work 5.4.4.2 Assemble 5.4.4.3 Solve 5.4.5 Evaluation of the Stiffness Matrix: Numerical Quadrature 5.4.5.1 Mapping of Elements from the s- to the x-Space: The Jacobian 5.4.6 Recover Strain and Stress 5.4.7 Overview of the Linear Static FE Method 5.4.8 Non-linear Finite Element Formulation 5.5 Explicit FEA for Dynamic Systems 5.5.1 The Single Degree of Freedom System (SDOF) 5.5.1.1 Formulation 5.5.1.2 Closed-Form Solution 5.5.1.3 Numerical Solution with Explicit Time-Stepping: The Linear Acceleration Method 5.5.2 Explicit FE and Hydrocode Techniques 5.6 Verification, Validation and Sensitivity Studies in FEA 5.6.1 Verification 5.6.2 Validation 5.6.3 Sensitivity / Uncertainty Quantification 5.7 Conclusion Further Reading 6: Fundamentals of Blast Biology and Physiology 6.1 Basic Cellular Biology 6.1.1 Nucleus 6.1.2 Cytoplasm 6.1.3 Cell Membrane 6.2 The Biological Hierarchy 6.3 Understanding the Cellular Effect of Blast 6.3.1 The Effect of Blast on the Cell Membrane 6.3.2 The Effect of Blast on Cytoplasm 6.3.3 The Effect of Blast on the Nucleus 6.4 Whole Cell Response 6.4.1 Cell Viability 6.4.2 Mechanotransductive Pathways Within the Cell 6.4.3 Cell Interactions with Its Environment: The Inside-Out—Outside-In Concept 6.5 Summary References Part II: Weapons Effects and Forensics 7: Section Overview 8: Weapon Construction and Function 8.1 Introduction 8.2 Small Arms Ammunition 8.3 Mortars 8.4 Grenades 8.5 Artillery Shells 8.6 Fuzes 8.7 Munition Components 8.8 What is an IED? 8.9 IED Components 8.9.1 Main Charge 8.9.2 Container 8.9.3 Switch 8.9.4 Power Source 8.9.5 Initiator 8.9.6 Enhancements 8.10 Using IEDs to Attack Personnel 8.11 Summary 9: Blast Injury Mechanism 9.1 Blast Injury Mechanisms 9.1.1 Overview 9.1.2 Primary Blast Injury 9.1.3 Secondary Blast Injury 9.1.4 Tertiary Blast Injury 9.1.5 Quaternary Blast Effects 9.1.6 Cause of Death After Explosions 9.2 Weapons 9.2.1 Blast Weapons 9.2.2 Fragmentation Weapons 9.2.3 Blast and Fragmentation Effects 9.2.4 Mines 9.2.5 Anti-Personnel Devices 9.2.6 Anti-Vehicle Devices 9.2.7 Improvised Explosive Device 9.3 Environmental Factors 9.3.1 Open 9.3.2 Confined Spaces 9.3.3 Structural Collapse 9.3.4 Deck Slap 9.4 Suicide Bombings 9.5 Summary References 10: Analysis of Explosive Events 10.1 The Examination of Post-Blast Scenes 10.1.1 Introduction 10.1.2 Coordination of the Post-Blast Scene 10.1.3 Optimal Capture of Forensic Evidence 10.1.4 Access Control and Cordoning 10.1.5 Explosives, Seat of Explosion, Device Identification 10.1.6 Zoning and Detailed Recording 10.1.7 Forensic Intelligence and Evidence 10.1.8 Conclusion 10.2 Case Study 1: Modelling the Blast Environment and Relating this to Clinical Injury: Experience From the 7/7 Inquest 10.2.1 Introduction 10.2.2 Approach 10.2.2.1 Work Strands 10.2.2.2 Model Design and Risk Reduction 10.2.2.3 Resources 10.2.2.4 Challenges: Quality of Information 10.2.3 Conclusion 10.3 Case Study 2: Injury Mechanism and Potential Survivability Following the 1974 Birmingham Pub Bombings 10.3.1 Introduction 10.3.2 Overview 10.3.3 Approach 10.3.3.1 Multidisciplinary Team Approach 10.3.3.2 Challenges: Missing Clinical Information 10.3.4 Findings 10.3.5 Conclusions Annex 1 References 11: Injury Scoring Systems 11.1 Introduction 11.2 Why Score Injury? 11.3 Types of Injury Scoring Systems 11.3.1 Physiological Scores 11.3.2 Anatomical 11.3.3 Combined Scores 11.4 Limitations of Contemporary Current Scores 11.4.1 Military Specific Scores 11.4.2 The Ideal Scoring System? 11.5 Conclusions References Part III: Clinical Problems 12: Section Overview Reference 13: The Immune and Inflammatory Response to Major Traumatic Injury 13.1 Introduction 13.2 Redefining the SIRS:CARS Paradigm 13.3 Mitochondrial-Derived Damage Associated Molecular Patterns: Therapeutic Targets for the Treatment of Post-Injury Immune Dysfunction? 13.4 Does Major Traumatic Injury Drive Accelerated Ageing of the Immune System? 13.5 The Post-Injury Immune Response as an Indicator of Patient Outcome 13.6 Future Directions References 14: Foot and Ankle Blast Injuries 14.1 Introduction 14.2 The Issue 14.3 Amputation or Limb Salvage 14.4 Improving Outcomes Following Limb Salvage 14.5 Future Research References 15: Traumatic Amputation 15.1 The Issue 15.2 Limitations of Current Injury Mechanism Theory 15.3 The Study 15.4 The Outcomes 15.5 Further Laboratory Studies 15.6 Association to Pelvic Blast Injury References 16: Pelvic Blast Injury 16.1 Introduction 16.2 UK Military Experience 16.3 Mechanism of Injury 16.4 Pelvic Fracture Classification 16.5 Bleeding Following Pelvic Trauma 16.6 Injury Mitigation 16.7 Research Direction of the Centre for Blast Injury Studies 16.8 Conclusion References 17: Blast Injury to the Spine 17.1 Introduction 17.2 Injury Patterns 17.2.1 Mounted Blast Injury Patterns 17.2.2 Dismounted Blast Injury Patterns 17.3 Mechanism of Blast Spinal Injuries 17.3.1 Mounted 17.3.2 Dismounted 17.4 Markers for Fatality 17.5 Associated Injuries 17.6 Outcomes 17.7 Summary References 18: Primary Blast Lung Injury 18.1 Introduction 18.2 Epidemiology 18.3 Pathophysiology 18.4 Diagnosis 18.5 Acute Respiratory Distress Syndrome (ARDS) 18.6 Management 18.7 Future Therapy References 19: Blast Injuries of the Eye 19.1 Primary Ocular Blast Injuries 19.2 Secondary Blast Injuries 19.3 Closed Globe Injuries 19.4 Traumatic Retinal Tears and Detachments 19.5 Tertiary Blast Injuries 19.6 Quaternary Blast Injury 19.7 Quinary Blast Injuries 19.8 Summary and Incidence References 20: Hearing Damage Through Blast 20.1 Introduction 20.2 Blast Damage to the Outer Ear 20.3 Middle Ear Damage 20.4 Blast-Induced Impairment of the Inner Ear 20.5 Damage to the Central Nervous System 20.6 Conclusion References 21: Torso injury from Under Vehicle Blast 21.1 Introduction 21.2 The Clinical Problem 21.3 Pattern of Injury 21.4 Mechanism of Injury 21.5 Biomechanics of Under Vehicle Blast Torso Injury 21.6 Injury Tolerance 21.7 The Future References 22: Blast Traumatic Brain Injury 22.1 Introduction and Background 22.2 The Clinical Problem 22.2.1 Minor Blast Traumatic Brain Injury 22.2.2 Moderate to Severe Blast Traumatic Brain Injury 22.3 Current Research/Management 22.3.1 Minor Blast Traumatic Brain Injury 22.3.2 Moderate to Severe Blast Traumatic Brain Injury 22.4 Future Focus 22.4.1 Minor Blast Traumatic Brain Injury 22.4.2 Moderate to Severe Blast Traumatic Brain Injury References 23: Heterotopic Ossification After Blast Injury 23.1 Introduction/Background 23.1.1 Background 23.1.2 HO After Blast Injury 23.1.3 Mechanism of Formation 23.1.4 Cellular and Genetic Mechanisms 23.2 The Clinical Problem and Current Management 23.2.1 Clinical Burden 23.2.2 Barrier to Rehabilitation 23.2.3 Lack of Prophylaxis 23.2.4 Surgical Management 23.3 Current Research 23.3.1 Novel Preventative Therapies 23.3.2 Risk Stratification and Early Detection 23.3.3 Animal Modelling 23.3.4 Direct Skeletal Fixation/Intraosseous Fixation of Prostheses 23.4 Future Research Focus References 24: Pathological Cascades Leading to Heterotopic Ossification Following Blast Injury 24.1 Introduction 24.2 Key Molecular Markers of Heterotopic Ossification 24.3 Signalling Pathways in Acquired Heterotopic Ossification 24.4 Discussion and Future Therapeutic Targets References 25: Fracture Non-Union After Blast Injury 25.1 Introduction 25.2 The Clinical Problem 25.3 Current Management 25.3.1 Nonsurgical Management of Non-Union 25.3.2 Surgical Management of the Non-Union 25.4 Future Research Foci and Needs 25.4.1 Mechanical Environment Enhancement 25.4.2 Biological Environment Enhancement References 26: Orthopaedic-Related Infections Resulting from Blast Trauma 26.1 Introduction 26.2 Clinical Problem 26.2.1 Osteomyelitis 26.2.2 Fracture Non-Union 26.2.3 Late Amputation 26.2.4 Organisms 26.3 Current Treatment and Management Strategies 26.3.1 Antibiotics 26.3.2 Irrigation 26.3.3 Debridement 26.3.4 Compartment Syndrome 26.3.5 Skeletal Fixation 26.3.6 Negative Pressure Wound Therapy 26.4 Future Research Directions 26.4.1 Clinical 26.4.2 PreClinical 26.4.3 Novel Therapies 26.5 Summary References Part IV: Modelling and Mitigation 27: Section Overview 28: In Silico Models 28.1 Introduction 28.2 Axelsson Model for Blast Loading of the Chest Wall 28.3 Projectile Flight and Penetration 28.4 Fragment Penetration to the Neck 28.5 The Lower Extremity in Tertiary Blast 28.6 Defining the Parameters of Energy-Attenuating Vehicle Seats 28.7 Conclusion References 29: In-Silico Modelling of Blast-Induced Heterotopic Ossification 29.1 Background 29.2 The Effect of the Mechanical Environment on HO 29.3 Computational Bone Remodelling Applied to Heterotopic Ossification 29.3.1 Computational Bone Remodelling 29.3.2 Application to Heterotopic Ossification 29.4 Simulating the Formation of Characteristic HO Morphologies 29.5 Discussion and Future Perspective References 30: Physical Experimental Apparatus for Modelling Blast 30.1 Introduction 30.2 Primary Blast 30.2.1 The Shock Tube 30.2.2 The Split-Hopkinson Pressure Bar (SHPB) 30.2.3 Other Devices 30.3 Secondary Blast 30.3.1 Gas Gun 30.3.2 Other Devices 30.4 Tertiary Blast 30.4.1 Drop Towers 30.4.2 Solid-Blast Injury Simulators 30.5 Conclusions References 31: In Vitro Models of Primary Blast: Organ Models 31.1 Introduction 31.2 Brain 31.3 Lung 31.4 Abdominal Organs 31.5 Eye 31.6 Summary References 32: Modelling Blast Brain Injury 32.1 In Silico Models 32.2 Ex Vivo Models 32.3 In Vitro Models 32.4 In Vivo Animal Models 32.4.1 Animal Species 32.4.2 Generation of Overpressure Waves 32.4.2.1 Free-Field Explosives 32.4.2.2 Blast Tubes 32.4.2.3 Shock Tubes 32.4.3 Critical Aspects 32.4.3.1 Anaesthesia and Analgesia 32.4.3.2 Pressure Wave Characteristics 32.4.3.3 Animal Head Orientation Relative to the Direction of the Pressure Wave 32.4.3.4 Head Mobile Versus Head Restrained 32.4.3.5 Head Only Blast Exposure (Thorax Protection) Versus Whole Body Blast Exposure (no Thorax Protection) 32.4.3.6 Single Blast Versus Repeated Blasts 32.4.3.7 Outcomes 32.5 Conclusion References 33: Post Mortem Human Tissue for Primary, Secondary and Tertiary Blast Injury 33.1 Benefits of Using PMHS 33.2 Issues with Using PMHS 33.3 Examples of Using PMHS for Blast Injury Research 33.4 Conclusion References 34: Surrogates: Anthropometric Test Devices 34.1 Introduction 34.2 A Brief History of ATDs 34.3 ATDs Used to Assess Occupant Safety in Blast 34.3.1 The Hybrid III ATD 34.3.2 The Eurosid-2RE ATD (ES-2re) 34.3.3 The MIL-lx 34.3.4 Warrior Injury Assessment Manikin 34.3.5 Frangible, Single-Use Surrogates 34.4 Injury Risk Assessment 34.5 Summary References Further Reading 35: Physical Models for Assessing Primary and Secondary Blast Effects 35.1 Introduction 35.2 Physical Models for Primary Blast Experiments 35.3 Physical Models for Assessing the Effectiveness of Secondary Blast 35.3.1 Single Fragment Testing 35.3.2 Combined Blast/Fragmentation Investigations References 36: Tertiary Blast Injury and its Protection 36.1 Introduction 36.2 Vehicles 36.3 Infrastructure References 37: Optimising the Medical Coverage of Personal Armour Systems for UK Armed Forces Personnel 37.1 Introduction 37.1.1 Essential and Desirable Medical Coverage 37.1.2 Vulnerable Anatomical Structures 37.2 Medical Coverage Definitions by Body Region 37.2.1 Head and Face 37.2.2 Neck 37.2.3 Torso 37.2.4 Upper Arm 37.2.5 Pelvis and Thigh 37.3 Computerised Comparisons in the Anatomical Coverage Provided by Different Armour Designs 37.4 Coverage of Personal Armour Issued to UK Armed Forces Personnel 37.4.1 Coverage Provided by Hard Plates as Shown in COAT 37.4.2 Medical Coverage Provided by the VIRTUS Helmet 37.4.3 Quantifying the Coverage Provided by Side Plates 37.4.4 Optimising the Coverage of Arm Protection 37.5 Conclusions References Part V: Rehabilitation 38: Section Overview 39: Survive to Thrive 39.1 An Anecdote of Adjustment 39.2 Short Biography 40: Rehabilitation Lessons from a Decade of Conflict 40.1 The Rehabilitation Challenge 40.2 Principles of Military Rehabilitation 40.2.1 Early Assessment 40.2.2 Exercise-Based Rehabilitation 40.2.3 Cross-Disciplinary Working: The Interdisciplinary Team 40.2.4 Active Case Management 40.2.5 Rapid Access to Specialist Opinion/Investigations 40.3 Hospital-Based Rehabilitation of the Blast-Injured Amputee 40.3.1 Early Rehabilitation in Critical Care 40.3.2 Early Function and Progress to Ward-Based Rehabilitation 40.3.3 The Rehabilitation Coordinating Officer 40.3.4 Innovating Practice 40.3.5 Pain Management 40.4 Military Rehabilitation of the Blast-Injured Amputee 40.4.1 Measuring Progress 40.4.2 Periodic Intensive Residential Rehabilitation (PIRR) 40.4.3 Prosthetics: Practical Lessons Learned 40.4.4 Prosthetic Rehabilitation Programme 40.4.4.1 Bilateral Amputees 40.4.4.2 Unilateral Amputees 40.4.4.3 Other Considerations 40.4.4.4 Osseointegration/Direct Skeletal Fixation (DSF) 40.4.5 The Challenge of Transition 40.5 Conclusion References 41: Prosthetics and Innovation 41.1 Introduction 41.2 Prosthetic Hardware 41.2.1 Upper Limb Prostheses 41.2.2 Lower Limb Prosthetics 41.3 Prosthetic Control 41.3.1 Body-Powered Systems 41.3.2 Commercial Actuated Prosthesis Control 41.4 Research Oriented Actuated Prosthesis Control 41.4.1 Regression-Based Continuous Control 41.4.2 Control Systems Based on Invasive EMG Systems 41.4.3 Alternative Control Approaches 41.5 Sensory Feedback 41.5.1 Non-invasive Sensory Feedback 41.5.2 Invasive Sensory Feedback 41.6 Surgical Techniques for Improved Prosthetic Experience 41.7 Conclusion and Future Outlook References 42: Orthotics 42.1 Introduction 42.2 Device Type 42.3 Custom Dynamic Orthoses 42.4 Design Considerations 42.5 Training, Evaluation, and Outcomes 42.6 Summary References 43: Sockets and Residuum Health 43.1 Introduction 43.2 Prosthetic Devices 43.2.1 Transtibial 43.2.2 Transfemoral 43.2.3 Through-Knee (Knee Disarticulation) 43.2.4 Socket Construction 43.2.5 Liners 43.2.6 Socket Suspension 43.2.6.1 Cuff Mechanisms 43.2.6.2 Harness Suspension 43.2.6.3 Sub-Atmospheric Pressure Suspension Suction Vacuum-Assisted Suspension 43.2.7 Socks 43.2.8 Orientation/Alignment 43.2.9 Components 43.3 Overview of Amputee Issues 43.3.1 Fit and Pressure Distribution 43.3.2 Volume Fluctuation 43.3.3 Temperature and Thermoregulation 43.3.4 Skin Conditions and Infection 43.3.5 Other Musculoskeletal Pathologies Related to the Socket 43.4 Understanding and Optimising Socket Fit 43.4.1 Qualitative Assessment 43.4.2 Computational Methods and Socket Fit 43.4.3 Sensing Methods 43.4.3.1 Strain Gauges 43.4.3.2 Piezoresistive Sensors 43.4.3.3 Piezoelectric Sensors 43.4.3.4 Capacitive Sensors 43.4.3.5 Optical Fibre Sensors 43.4.3.6 Optoelectronic Sensors 43.4.3.7 Sensor Mounting Techniques 43.4.4 Optimisation of Interfacial Stresses 43.4.5 Accounting for Volume Fluctuation 43.4.6 Heat Management 43.4.7 Surgical Methods 43.4.7.1 Transtibial 43.4.7.2 Transfemoral 43.5 Summary References 44: Bone Health in Lower-Limb Amputees 44.1 Introduction to the Mechanics of Bone Structure and Prediction in Finite Element Modelling 44.2 Bone Changes in Amputees 44.2.1 General Trends of Decreased Bone Density 44.2.2 Mechanisms of Bone Loss 44.2.3 Aetiology of Bone Loss in Amputees 44.3 Clinical Study on Bone Changes in Amputees 44.4 Computational Modelling of Stress and Strain in Amputees 44.5 Discussion References 45: Musculoskeletal Health After Blast Injury 45.1 Introduction 45.2 Prevalence of Joint Health and Secondary Injuries 45.3 The Relationship Between Movement Biomechanics and Joint Health 45.3.1 Lower Limb Joint Mechanics and Osteoarthritis 45.3.2 Low-Back Mechanics and Pain 45.4 Implications for Rehabilitation and Future Directions 45.5 Conclusion References 46: Biomechanics of Blast Rehabilitation 46.1 Loading the Musculoskeletal System 46.1.1 Musculoskeletal Capacity 46.2 Computational Modelling to Analyse Musculoskeletal Loading 46.3 Examples 46.3.1 Biomechanics and Osteoarthritis in Amputees 46.3.2 Optimising Prosthetic Parameters 46.3.3 Functional Electrical Stimulation Interventions 46.4 Conclusion References 47: Pain 47.1 Pathophysiology 47.1.1 Introduction 47.1.2 Definitions 47.1.3 Acute Versus Chronic Pain 47.1.4 The Role of Nervous System Inflammation 47.1.5 Peripheral Nerve Injury (PNI) 47.1.6 Phantom Limb Pain (PLP) 47.1.7 A Current Conceptual Model of PNI and NeuP 47.1.8 Patient Assessment 47.1.9 Clinical Correlates 47.2 Treatment 47.2.1 Introduction 47.2.2 Immediate Response 47.2.3 Perioperative Care 47.2.4 Chronic Pain and Rehabilitation 47.2.4.1 Introduction 47.2.4.2 Treatment 47.2.4.3 Comorbidities 47.2.4.4 Prognosis 47.3 Summary References Glossary Index