ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biotechnological Production of Bioactive Compounds

دانلود کتاب تولید بیوتکنولوژیک ترکیبات زیست فعال

Biotechnological Production of Bioactive Compounds

مشخصات کتاب

Biotechnological Production of Bioactive Compounds

ویرایش: 1 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0444643230, 9780444643230 
ناشر: Elsevier Science Ltd 
سال نشر: 2019 
تعداد صفحات: 488 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Biotechnological Production of Bioactive Compounds به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تولید بیوتکنولوژیک ترکیبات زیست فعال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تولید بیوتکنولوژیک ترکیبات زیست فعال



تولید بیوتکنولوژیک ترکیبات زیست فعال بینشی در مورد جدیدترین نوآوری ها، روندها، نگرانی ها، راه حل ها و چالش های عملی در زمینه های فناوری آنزیمی و نانوبیوتکنولوژی برای تولید مواد زیست فعال با مزایای سلامتی اضافی ارائه می دهد. . از آنجایی که نانوبیوتکنولوژی فرآیند استخراج زیست فعال را به طور قابل توجهی بهبود بخشیده است، بسیاری از بیواکتیوها، از جمله بیوفلاونوئیدها، اسیدهای چرب امگا 3، بیوپیگمنت ها و جایگزین های قند کم کالری بخش مهمی از صنایع غذایی هستند. این کتاب تولید مزایای سلامتی اضافی bioactives از گیاهان و میکروب ها را برجسته می کند و توضیح می دهد که چگونه کارایی استخراج مولکول های فعال زیستی با پیشرفت های اخیر در نانوبیوتکنولوژی به طور قابل توجهی بهبود می یابد.

محققان در زمینه های مهندسی بیوشیمی، بیوتکنولوژی، زیست پالایی، پایداری محیطی و کسانی که در صنایع داروسازی هستند، اطلاعات این کتاب را بسیار مفید و روشنگر خواهند یافت.

  • پیشرفت‌های فن‌آوری در استخراج مواد فعال زیستی را تشریح می‌کند
  • بیوفلاونوئیدها، بیوپیگمنت‌ها، اسیدهای چرب امگا 3 و جایگزین‌های کم قند را پوشش می‌دهد
  • مکانیسم‌های سبز را توضیح می‌دهد. محموله (نانوذرات بیوژنیک) برای تحویل مولکول های فعال زیستی

توضیحاتی درمورد کتاب به خارجی

Biotechnological Production of Bioactive Compounds provides insights on the most recent innovations, trends, concerns, solutions and practical challenges encountered in the fields of enzyme technology and nanobiotechnology for the production of bioactive materials with extra health benefits. As nanobiotechnology has improved the bioactive extraction process significantly, many bioactives, including bioflavonoids, omega-3 fatty acids, biopigments and low calorie sugar substitutes are a pivotal part of the food industry. The book highlights the production of extra health benefits “bioactives’’ from plants and microbes and explains how the extraction efficiency of bioactives molecules improves significantly with the recent advances in nanobiotechnology.

Researchers in the fields of biochemical engineering, biotechnology, bioremediation, environmental sustainability and those in pharma industries will find the information in this book very helpful and illuminating.

  • Outlines technological advances in bioactives extraction
  • Covers bioflavonoids, biopigments, omega-3-fatty acids and low sugar substitutes
  • Explains the mechanisms of Green cargo (biogenic nanoparticles) for the delivery of bioactive molecules


فهرست مطالب

Cover
Biotechnological Production of Bioactive Compounds
Copyright
Contributors
Biographies
Preface
1. Technologies for extraction and production of bioactive compounds
	1. Introduction
	2. History of bioactive compounds
	3. Synthesis of bioactive compounds
	4. Source of bioactive compounds
		4.1 Plant tissues
		4.2 Marine system
		4.3 Microorganisms
		4.4 Algae and microalgae
		4.5 Metabolic engineering (ME)
	5. Methods for extracting bioactive compounds
		5.1 Solvent extraction
		5.2 Nonconventional methods
		5.3 Green extraction techniques
		5.4 Supercritical fluid extraction (SFE)
		5.5 Microwave-assisted extraction (MAE)
		5.6 Ultrasound-assisted extraction (UAE)
		5.7 Pressurized liquid extraction (PLE)
		5.8 Pulsed-electric field extraction (PEF)
	6. Bioactive compounds as a source of functional foods
	7. Conclusion
	References
2. Recovery and utilization of bioactives from food processing waste
	1. Introduction
	2. Recovery of bioactives from various plant-based food waste
		2.1 Proteins
			2.1.1 Soybean food industries
			2.1.2 Canola oil industries
			2.1.3 Peanut oil industries
			2.1.4 Global protein waste from hazelnut oil industry
			2.1.5 Protein wastes from sunflower oil industries
			2.1.6 Protein waste generation from palm oil industries
			2.1.7 Protein waste data from cereal waste
		2.2 Polysaccharides
			2.2.1 Cereals
			2.2.2 Vegetables
			2.2.3 Fruits
		2.3 Phenolic compounds
	3. Utilization of bioactive compound from food wastes
	4. Conclusion and future aspects
	References
3. Bioflavonoids: synthesis, functions and biotechnological applications
	1. Introduction
	2. Chemistry and sources of flavonoids
		2.1 Chemistry of flavonoids
		2.2 Classification and sources of flavonoids
			2.2.1 Flavonols
			2.2.2 Flavones
			2.2.3 Flavanones
			2.2.4 Isoflavones
			2.2.5 Flavanols
			2.2.6 Anthocyanins
			2.2.7 Chalcones
	3. Methods of flavonoid extraction
		3.1 Chemical methods of extraction
		3.2 Physical methods of extraction
			3.2.1 Microwave-assisted extraction method
			3.2.2 Ultrasound-assisted extraction method
			3.2.3 Accelerated solvent extraction method
			3.2.4 Supercritical fluid extraction
	4. Health benefits of flavonoids
		4.1 Free radical scavenging
		4.2 Anti tumor effects
		4.3 Anti arthrosclerotic effects
		4.4 Anti diabetic effects
	5. Conclusion and future directions
	References
4. Bioactive peptides: synthesis, functions and biotechnological applications
	1. Introduction
	2. Sources
	3. BAPs from animal sources
	4. BAPs from vegetal sources
	5. Peptides from food sources
	6. Milk
	7. Eggs
	8. Meat
	9. Exogenous peptides
	10. Production of BAPs
		10.1 Enzymatic synthesis
		10.2 Microbial fermentation
		10.3 Chemical synthesis
		10.4 Synthesis by recombinant DNA technology
	11. Purification and recovery approaches
	12. Broader functions and biotechnological applications of peptides
	13. Antimicrobial BAPs
	14. Antioxidative peptides
	15. Cytomodulatory and immunomodulatory/anti-inflammatory peptides
	16. Antihypertensive peptides
	17. Anticancerous peptides
	18. Opioid peptides
	19. Biotechnology applications
	20. Conclusion and future directions
	References
5. Biotechnological production of phytosteviosides and their potential applications
	1. Introduction
	2. Structure and biochemical properties of steviosides
	3. Estimation of steviosides
	4. Extraction of steviosides
	5. Conventional approaches for phytostevioside production
	6. Biotechnological production of stevioside
	7. Using tissue culture technology
	8. Establishment of callus and suspension cultures
	9. Stevioside production using bioreactors
	10. Production of steviosides with recombinant DNA technology
	11. Production of steviosides using metabolic engineering
	12. Applications of phytosteviosides
	13. Application of stevioside as substitute for table sugar
	14. Application of steviosides in food industry and beverages
	15. Application of steviosides in dairy industry
	16. Applications of steviosides as therapeutics
	17. Safety aspects and toxicity of steviosides
	18. Current status and future prospects of steviosides
	19. Future prospects
	20. Conclusion
	References
6. Biotechnological application of health promising bioactive molecules
	1. Introduction
	2. Biotechnological intervention for improving bioactive molecules in vegetables
	3. Biotechnological implication of medicinal plants research
	4. In vitro plant regeneration and micropropagation
	5. Bioinformatics resources and “Omics” based Himalayan medicinal plants research
	6. Scope and limitation of health promising bioactive compounds
	7. Conclusion and future directions
	References
7. Biotechnological production of high-valued algal astaxanthin and lutein under different growth conditions
	1. Introduction
	2. Astaxanthin
		2.1 Astaxanthin (sources and importance)
		2.2 Structure
	3. Lutein
		3.1 Lutein sources and importance
		3.2 Chemical structure
	4. Biotechnological production of algal high-valued compounds
		4.1 Astaxanthin
			4.1.1 Haematococcus pluvialis
			4.1.2 Chlorella zofingiens
		4.2 Lutein
			4.2.1 Murielopsis sp
			4.2.2 Scenedesmus sp.
			4.2.3 Chlorella sp.
			4.2.4 Coccomyxa onubensis
			4.2.5 Dunaliella salina
			4.2.6 Heterochlorella luteoviridis
	5. Conclusion and future directions
	References
8. Biotechnological exploitation of cyanobacteria and microalgae for bioactive compounds
	1. Introduction
	2. Algae as a source of bioactive compounds
	3. Algae: cellular structure
		3.1 Prokaryotic microalgae: cyanobacteria
		3.2 Eukaryotic microalgae
	4. Microalgal bioactive compounds
		4.1 Antioxidant compounds
		4.2 Anti-inflammatory compounds
		4.3 Antimicrobial compounds
			4.3.1 Antibacterial compounds
			4.3.2 Antifungal compounds
			4.3.3 Algicidal compounds
			4.3.4 Antiviral compounds
		4.4 Antitumoral compounds
		4.5 Additional bioactive compounds
	5. Microalgal cell factories for bioactive compounds
		5.1 Microalgae cultivation
			5.1.1 Photoautotrophic cultivation system
			5.1.2 Heterotrophic cultivation system
		5.2 Extraction of algae-derived bioactive compounds
	6. Concluding remarks and future directions
	References
9. Biotechnological production of sweeteners
	1. Introduction
	2. Classification of sweeteners
		2.1 Artificial sweeteners
		2.2 Modified sugars
		2.3 Natural caloric sweeteners
		2.4 Natural zero calorie sweeteners
		2.5 Sugars
		2.6 Sugar alcohols
	3. Commercial outlook and demand of sweeteners
	4. Health effects of sweeteners and regulations for consumptions
		4.1 Xylitol
		4.2 Erythritol
		4.3 Sorbitol
		4.4 Mannitol
		4.5 Sucralose
		4.6 Aspartame
	5. Biotechnological production of sweeteners
		5.1 Xylitol
		5.2 Erythritol
		5.3 Arabitol
		5.4 Sorbitol
		5.5 Mannitol
	6. Conclusion and future directions
	References
10. Microbial production of omega-3 polyunsaturated fatty acids
	1. Introduction
	2. Biosynthesis mechanism of omega-3 fatty acids
	3. Sources of omega-3-fatty acids
		3.1 Microflora
			3.1.1 Bacteria
			3.1.2 Microalgae
			3.1.3 Fungi
			3.1.4 Genetically modified plants and other microorganisms
	4. Bioprocessing of omega-3 fatty acids production
		4.1 Optimization of physicochemical condition on production of DHA
			4.1.1 Effect of carbon sources
			4.1.2 Effect of nitrogen sources
			4.1.3 Effect of pH
			4.1.4 Effect of temperature
			4.1.5 Effect of aeration on DHA production
			4.1.6 Effect of salinity on DHA production
	5. Extraction and quantification of microalgal omega-3 fatty acids
	6. Extraction of omega-3 fatty acids from fungi
	7. Conclusion and future directions
	References
11. Production of fungal and bacterial pigments and their applications
	1. Introduction
		1.1 Biopigments types, classification and properties
	2. Microorganisms: their role as assets in biopigments production
		2.1 Physiological aspects of microbial biopigments production
		2.2 Microorganisms: an asset in biopigment production
		2.3 Consolidated processes for microbial processes production
		2.4 Prospecting microorganisms for biopigments and innovative applications of these metabolites
		2.5 Strain improvement methods for improved biopigments production
	3. Fermentation: methods and new formulations for biopigment production
		3.1 Potential biomasses as a substrate for biopigment production
		3.2 Effect of carbon and nitrogen sources for the production of biopigments
		3.3 Reactor configuration and fermentation modes
	4. Biopigments recovery methods
	5. Potential applications
	6. Conclusion and future directions
	References
12. Biotechnological production and applications of ribonucleases
	1. Introduction
	2. Major sources of RNases
		2.1 Bacterial and archaeal ribonucleases
		2.2 Fungal ribonucleases
		2.3 Plant ribonucleases
		2.4 Animal ribonucleases
	3. Potential applications of ribonucleases
	4. Ribonuclease A (RNase A)
	5. Ribonuclease P
	6. Ribonuclease H
	7. Role of ribonucleases in cancerous diseases
	8. Bovine seminal ribonuclease (BR-RNase)
	9. Onconase
	10. RNase T1
	11. Binase
	12. Barnase
	13. RNase Sa
	14. α-Sarcin
	15. Actibind and RNase T2
	16. Antiviral activity of ribonucleases
	17. Conclusion and future directions
	References
13. Green nanotechnology for bioactive compounds delivery
	1. Introduction
	2. Green chemistry and its principles
	3. Medicinal importance of bioactive molecules
	4. Biological synthesis of nanoparticles
	5. Nanomaterials based bioactive compound delivery
		5.1 Nanomaterials for delivery of anti-oxidant bioactive molecules
		5.2 Nanomaterials for delivery of anti-cancer bioactive molecules
		5.3 Nanomaterials for delivery of anti-malarial bioactive molecules
		5.4 Nanomaterials for delivery of anti-bacterial bioactive molecules
		5.5 Nanomaterials for delivery of wound healing bioactive molecules
	6. Conclusion and future directions
	References
14. Recent trends in the development of nano-bioactive compounds and delivery systems
	1. Introduction
	2. Bioaccessibility and bioavailability of bioactive compounds
	3. Nano-bioactive compounds
	4. Nano-based systems for the delivery of nanobioactive compounds
		4.1 Polymeric nanoparticles
		4.2 Solid lipid nanoparticles
		4.3 Liposomes
		4.4 Nanostructured lipid carriers (NLCs)
		4.5 Nanoniosomes
		4.6 Nanoemulsions
	5. Conclusion and future directions
	References
15. Nanotechnology for enhanced bioactivity of bioactive compounds
	1. Introduction
	2. Role of “nano” to enhance the activity of bioactive compounds
		2.1 Enzyme catalysis
		2.2 Detection of pathogen and biomarkers
		2.3 Hormonal balance
		2.4 Application in healing from wounds
		2.5 Application in immune responses
	3. Increase the biological activity of bioactive molecules by using nanotechnology
		3.1 Design of nanocarriers for delivery of bioactive molecules
			3.1.1 Methods of synthesis of nanocarriers
				3.1.1.1 Nanoemulsions
				3.1.1.1 Nanoemulsions
				3.1.1.2 Nanoprecipitation technique
				3.1.1.2 Nanoprecipitation technique
				3.1.1.3 Drying techniques for producing nanoparticles
				3.1.1.3 Drying techniques for producing nanoparticles
		3.2 Design of nanocarriers by using bioactive molecules
			3.2.1 Bioactive molecules based nanocarriers for protein delivery
				3.2.1.1 Current protein delivery methods and challenges
				3.2.1.1 Current protein delivery methods and challenges
		3.3 Tissue engineering
			3.3.1 Scaffold preparation or fabrication
			3.3.2 Bioactive molecules for efficient tissue engineering application using nanotechnology
	4. Scope and limitation of bioactive compounds
	5. Conclusion and future directions
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
Back Cover




نظرات کاربران