دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st
نویسندگان: Goodman. Melody S
سری:
ISBN (شابک) : 9781315155661, 1351642197
ناشر: Routledge
سال نشر: 2017
تعداد صفحات: 581
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 مگابایت
کلمات کلیدی مربوط به کتاب آمار زیستی برای تحقیقات بالینی و بهداشت عمومی: بهداشت عمومی -- تحقیق -- روشهای آماری.، بیومتری.
در صورت تبدیل فایل کتاب Biostatistics for clinical and public health research به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار زیستی برای تحقیقات بالینی و بهداشت عمومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Acknowledgments Author List of abbreviations Introduction General overview What is statistics? The two main branches of statistics Basic problem of statistics Data Units and variables Types of variables References Chapter 1: Descriptive statistics Terms Introduction Measures of central tendency (Measures of location) Example Problem 1.1 Practice Problem 1.1 Arithmetic mean versus median Arithmetic mean Median Example of geometric mean using data from the 2014 National Health and Nutrition Examination Survey Example Problem 1.2 Practice Problem 1.2 Measures of spread Example Problem 1.3 Practice Problem 1.3 Measures of variability Example Problem 1.4 Practice Problem 1.4 Grouped mean Grouped variance Example Problem 1.5 Practice Problem 1.5 Types of graphs What makes a good graphic or tabular display? Example Problem 1.6 Practice Problem 1.6 Outliers and standard distribution rules Practice Problem 1.7 Practice Problem 1.8 Practice Problem 1.9 Practice Problem 1.10 References Lab A: Introduction to SAS® The basics Getting started What is SAS? SAS windowing environment SAS menus SAS programs Opening data files in SAS Data editor Inputting data into SAS Labels Summarizing data Example Problem A.1 Formats Printing SAS output Creating new variables with formulas Graphs Example Problem A.2 Saving graphs Practice Problem A.1 Practice Problem A.2 Practice Problem A.3 References Lab A: Introduction to Stata® The basics Getting started What is Stata? Stata Windows Stata menus Opening existing Stata data files The Do Editor Data Editor Inputting data into Stata Labels Log files Summarizing data Example Problem A.1 Value labels Printing Creating new variables with formulas Graphs Example Problem A.2 Saving graphs Practice Problem A.1 Practice Problem A.2 Practice Problem A.3 References Chapter 2: Probability Terms Introduction Example of probability in action Properties of probabilities Laws of probability Mutually exclusive and exhaustive References Chapter 3: Diagnostic testing/screening Terms Introduction Diagnostic terms and concepts Receiver operating characteristic curves References Chapter 4: Discrete probability distributions Terms Introduction Examples of discrete random variables Examples of continuous random variables Measures of location and spread for random variables Permutations and combinations Binomial distribution Properties of the binomial distribution Parameters of binomial distribution Poisson distribution Poisson distribution properties Poisson distribution estimation References Chapter 5: Continuous probability distributions Terms Introduction Distribution functions Normal distribution Standard normal distribution Standardization of a normal variable Why use the standard normal? Review of probability distributions References Lab B: Probability distributions References Chapter 6: Estimation Terms Introduction Statistical inference Sampling Randomized clinical trials Types of clinical trials Population and sample mean Sampling distribution of the mean Unbiased estimators Population and sample measures of spread Central limit theorem Example Problem 6.2 Confidence intervals for means What the confidence interval does not imply What the confidence interval does imply Example demonstrating the meaning of confidence interval Hand calculation of one-sided confidence interval Width of confidence interval Using the standard normal distribution for a mean Using SAS to construct confidence intervals for a mean The PROC MEANS procedure Using Stata to construct confidence intervals for a mean Requesting a one-sided confidence interval The t-distribution Obtaining critical values in SAS and Stata Sampling distribution for proportions Confidence intervals for proportions Using SAS to obtain confidence intervals for proportions Using Stata to obtain confidence intervals for proportions References Chapter 7: One-sample hypothesis testing Terms Introduction Basics of hypothesis testing Step 1: State the hypothesis Step 2: Specify the significance level Step 3: Draw sample of size n Step 4: Compute the test statistic Step 5: Compare p-value to α and determine to reject or fail to reject the null hypothesis Types of errors Asymmetry of errors Step 6: State conclusions regarding subject matter Confidence intervals and hypothesis tests One-sample tests for the mean using software One-sample tests for the mean using SAS One-sample tests for the mean using Stata Inference for proportions Hypothesis testing for proportions One-sample tests for a proportion using SAS One-sample tests for a proportion using Stata Determining power and calculating sample size Calculating power 10 steps to finding the power of a one-sample, one-sided test Calculating sample size Approximate sample size based on confidence interval width Power and sample size for one-sample tests for the mean using SAS Power and sample size for one-sample tests for the mean using Stata Power and sample size for one-sample tests for a proportion using SAS Power and sample size for one-sample tests for a proportion using Stata References Lab C: One-sample hypothesis testing, power, and sample size References Chapter 8: Two-Sample Hypothesis Testing Terms Introduction Dependent samples (paired tests) Using SAS with dependent samples Using Stata with dependent samples Independent samples Testing for the equality of two variances Test for equality of variances in stata t-Test with equal variances in SAS t-Test with equal variances in Stata t-Test with unequal variances in SAS t-Test with unequal variances in Stata Sample size and power for two-sample test of means Using SAS for sample size and power for two-sample test of means Using Stata for sample size and power for two-sample test of means PRACTICE PROBLEM 8.3 References Chapter 9: Nonparametric hypothesis testing Terms Introduction Types of data Parametric vs. nonparametric tests Nonparametric tests for paired data Sign test Wilcoxon signed-rank test Performing nonparametric tests for paired data in SAS Performing nonparametric tests for paired data in Stata Nonparametric tests for independent data Wilcoxon rank-sum test Performing nonparametric tests for independent data in SAS Performing nonparametric tests for independent data in Stata References Lab D: Two-sample (parametric and nonparametric) hypothesis testing Practice Problem D.1 Practice Problem D.2 Practice Problem D.3 Practice Problem D.4 Practice Problem D.5 References Chapter 10: Hypothesis testing with categorical data Terms Introduction Two-sample test for proportions Normal theory method Example Problem 10.1 Practice Problem 10.1 Contingency table methods 2 × 2 Contingency table R × C contingency table The chi-squared distribution Sample size and power for comparing two binomial proportions Sample size and power for two binomial proportions in SAS Sample size and power for two binomial proportions in stata Sample size and power in a clinical trial setting Example Problem 10.2 Practice Problem 10.2 Example Problem 10.3 Example Problem 10.4 Practice Problem 10.3 Example Problem 10.5 Practice Problem 10.4 Practice Problem 10.5 Practice Problem 10.6 References Chapter 11: Analysis of variance (ANOVA) Terms Introduction Within- and between-group variation ANOVA assumptions Independence Normality Equal variance Testing for significance Multiple comparisons Using SAS to conduct an ANOVA Homogeneity of variance in SAS Multiple comparisons in SAS Using Stata to conduct an ANOVA Multiple comparisons in stata References Chapter 12: Correlation Term Introduction Population correlation coefficient (ρ) Visualizing correlated data Pearson correlation coefficient (r) Using SAS to calculate the Pearson correlation coefficient Testing a different “Null” hypothesis about the Pearson correlation coefficient, using SAS Using Stata to calculate the Pearson correlation coefficient Spearman rank correlation coefficient (rs) Using SAS to calculate Spearman rank correlation coefficient Using Stata to calculate Spearman rank correlation coefficient References Chapter 13: Linear regression Simple linear regression Regression concepts Method of least squares Linear relationship Inference for predicted values Predicting a mean outcome value Predicting an individual outcome value Evaluation of the model Multiple linear regression Model evaluation Other explanatory variables Indicator variables Categorical variables Interaction terms Model selection Collinearity References Chapter 14: Logistic regression Term Introduction Interpretation of coefficients Hypothesis tests and confidence intervals for estimated regression coefficients Model evaluation Logistic regression in SAS Logistic regression in Stata References Chapter 15: Survival analysis Terms Introduction Comparing two survival functions References Lab E: Data analysis project Part one Part two Part three Part four Part five Part six Part seven Part eight Part nine Part ten Reference Appendix: Statistical tables Index