ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biosensors in Food Safety and Quality: Fundamentals and Applications

دانلود کتاب حسگرهای زیستی در ایمنی و کیفیت مواد غذایی: مبانی و کاربردها

Biosensors in Food Safety and Quality: Fundamentals and Applications

مشخصات کتاب

Biosensors in Food Safety and Quality: Fundamentals and Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 036720164X, 9780367201647 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 273
[274] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Biosensors in Food Safety and Quality: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب حسگرهای زیستی در ایمنی و کیفیت مواد غذایی: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب حسگرهای زیستی در ایمنی و کیفیت مواد غذایی: مبانی و کاربردها

بیوسنسورهای کالریمتری: اصول اصلی، تکنیک‌ها، ساخت و کاربرد / Amit Baran Das -- بیوسنسورهای نوری: اصول، تکنیک‌ها، طراحی حسگر و کاربرد آنها در تجزیه و تحلیل مواد غذایی / P P Sahu - بیوسنسورهای پیزوالکتریک: اصل، تکنیک‌ها و کاربرد آنها در تجزیه و تحلیل مواد غذایی / ص میشرا.


توضیحاتی درمورد کتاب به خارجی

Calorimetric biosensors : core principles, techniques, fabrication and application / Amit Baran Das -- Optical biosensors: principles, techniques, sensor design and their application in food analysis / P P Sahu -- Piezoelectric biosensors: principle, techniques, and their application in food analysis / P. Mishra.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Editors
Contributors
Chapter 1: Introduction
	1.1 Introduction
		1.1.1 History
		1.1.2 Key Elements and Characteristics of Biosensors
			1.1.2.1 Analyte
			1.1.2.2 Bioreceptors
			1.1.2.3 Transducer
			1.1.2.4 Electronics
			1.1.2.5 Display
		1.1.3 Classification
			1.1.3.1 Transducing Element
				1.1.3.1.1 Mass Based Biosensor
					1.1.3.1.1.1 Magnetoelectric
					1.1.3.1.1.2 Piezoelectric
					1.1.3.1.1.2.1 Quartz Crystal Microbalance (QCM)
					1.1.3.1.1.2.2 Surface Acoustic Wave (SAW)
					1.1.3.1.1.2.3 Capacitive Micro-Machined Ultrasonic Transducers (CMUTs)
					1.1.3.1.1.2.4 Bulk Acoustic Wave (BAW) Piezoelectric Sensor
					1.1.3.1.1.2.4.1 Thickness Shear Mode (TSM) Resonator
					1.1.3.1.1.2.4.2 Shear Horizontal Acoustic Plate Mode (SHAPM)
				1.1.3.1.2 Electrochemical Biosensor
					1.1.3.1.2.1 Potentiometric Sensors
					1.1.3.1.2.2 Amperometric
					1.1.3.1.2.3 Conductometric
				1.1.3.1.3 Optical Biosensor
					1.1.3.1.3.1 Fluorescence-Based Biosensors
					1.1.3.1.3.2 Surface Plasmon Resonance (SPR)
					1.1.3.1.3.3 Raman and FTIR
					1.1.3.1.3.4 Fiber Optics
			1.1.3.2 Bio-Recognition Element
				1.1.3.2.1 Enzyme Based Biosensor
				1.1.3.2.2 Immuno Biosensors
				1.1.3.2.3 Microbial Biosensors
			1.1.3.3 Characteristics of a Biosensor
		1.1.4 Food Analysis and Biosensors
		1.1.5 Conclusion
	Bibliography
Chapter 2: Calorimetric Biosensors: Core Principles, Techniques, Fabrication and Application
	2.1 Introduction
	2.2 Thermal Biosensors: Working Principles
		2.2.1 Transducer
		2.2.2 Instrumentation
		2.2.3 Conventional Device
		2.2.4 Mini Thermometric System
		2.2.5 Micro Thermometric System
		2.2.6 Thermopile-Based Microbiosensor
		2.2.7 Multisensing Thermometric System
		2.2.8 Hybrid Sensors
	2.3 Categories of Calorimeter Based on Design Principles
	2.4 Application of Calorimetric Based Biosensors
		2.4.1 Enzyme Activity
		2.4.2 Clinical Monitoring
		2.4.3 Process Monitoring
		2.4.4 Multianalyte Determination
		2.4.5 In Non-Aqueous Media
		2.4.6 Other Applications
		2.4.7 Food
		2.4.8 Environmental
	2.5 Advantages and Disadvantage of Calorimetric Based Biosensors
		2.5.1 Advantages
		2.5.2 Limitations of Calorimetric Based Biosensors
	2.6 Future Developments
		2.6.1 Telemedicine
	2.7 Conclusion
	Bibliography
Chapter 3: Optical Biosensors: Principles, Techniques, Sensor Design and Their Application in Food Analysis
	3.1 Introduction
	3.2 Different Optical Biosensors
		3.2.1 Fiber Optic Biosensors
			3.2.1.1 Classification of Fiber Optic Biosensors
			3.2.1.2 Enzyme Based
		3.2.2 Immobilization Methods
			3.2.2.1 Binding to Carrier
			3.2.2.2 Immobilization by Binding
			3.2.2.3 Immunoassay Based Immobilization
			3.2.2.4 Nucleic Acid Based Immobilization
			3.2.2.5 Whole Cell Based Immobilization
			3.2.2.6 Biomimetic Based
		3.2.3 Types of Detectors in Biosensors
			3.2.3.1 Photo Multiplier Tubes (PMT)
			3.2.3.2 Avalanche Photodiode (APD)
			3.2.3.3 Charge Coupled Device (CCD)
			3.2.3.4 Light sources and Signal Delivery Systems/Fiber Optic Cables
	3.3 Surface Plasmon Resonance (SPR) Biosensors
		3.3.1 Advantages of SPR
	3.4 Application of Optical Biosensors for Food Quality and Safety
		3.4.1 Pathogens Detection Method
		3.4.2 Pesticide Residues Detection Method
		3.4.3 Veterinary Drug Residues Detection in Animal Derived Products
		3.4.4 Microbial Pollution and Hygiene
		3.4.5 Monitoring of Heavy Metals, Adulterants, and Other Toxic Compounds Content in Food Items
		3.4.6 Evanescent Wave Fluorescence Biosensors
		3.4.7 Detection of Hygiene and Microbial Contamination
		3.4.8 Development of Optical Biosensors Apart from Food Industry
	3.5 Future Scope in Optical Fiber
	3.6 Conclusion
	References
Chapter 4: Piezoelectric Biosensors: Principle, Techniques, and Their Application in Food Analysis
	4.1 Introduction
	4.2 Principle
	4.3 Materials Used for Piezoelectric Assay
	4.4 Fabrication of Piezoelectric Sensor
		4.4.1 Antigen Antibody-Based
		4.4.2 Poly (Vinylidene Fluoride-Trifluoroethylene) (P(VDF-TrFE))-Zinc Oxide Based Sensor
		4.4.3 Sb-Doped p-ZnO NW Films for Self-Powered Piezoelectric Strain Sensors
		4.4.4 Zinc-Oxide Based Micro Electromechanical System (MEMS) Acoustic Sensor
		4.4.5 Disposable Piezoelectric Vibration Sensors with PDMS/ZnO Transducers on Printed Graphene-Cellulose Electrodes
	4.5 Immobilization Procedures of Bioreceptors
	4.6 Applications of Piezoelectric Assay
		4.6.1 Detection of TB
		4.6.2 Detection of Salmonella typhimurium
		4.6.3 Quality Control of Modified Atmosphere Packages
		4.6.4 Quality Control of Fish and Meat
		4.6.5 Adulteration of Bovine Milk
		4.6.6 Recognition of Eating Habits and Nutrition Intake
	4.7 Merits and Demerits of Piezoelectric Biosensor
	4.8 Commentary and Future Scope in Piezoelectric Sensors
	Bibliography
Chapter 5: Electrochemical Sensors: Core Principle, New Fabrication Trends, and Their Applications
	5.1 Introduction
	5.2 Working Principle of Electrochemical Sensor
	5.3 Major Components of Electrochemical Sensor
	5.4 Technological Aspect and Fabrication
	5.5 Different Electrochemical Sensors
		5.5.1 Cyclic Voltammetry (CV)
		5.5.2 Biosensing Using Electrochemical Impedance Spectroscopy (EIS)
		5.5.3 Biosensing Using Field-Effect Transistor (FET)
		5.5.4 Electrochemical Surface-Plasmon Resonance (EC-SPR) Based Sensor
		5.5.5 Biosensing Waveguide-Based Techniques and Electrochemistry
		5.5.6 Magnetic Field Based Electrochemical Biosensors
		5.5.7 Electrochemical Signal Transduction for the Biosensing
	5.6 Application of Electrochemical Sensor
		5.6.1 Electrochemical Sensors for Environmental Monitoring
		5.6.2 Electrochemical Sensors in Analytical Chemistry
		5.6.3 Electrochemical Sensors in Clinic Analysis
		5.6.4 Nanomaterial-Based No-Wash Electrochemical Biosensors
		5.6.5 Electrochemical Sensors in Food Analysis
	5.7 Limitation and Future Scope of Electrochemical Sensors
	5.8 Conclusion
	Bibliography
Chapter 6: Colorimetric Biosensors: Principal, Fabrication, and Application in Food Analysis
	6.1 Introduction
	6.2 Fabrication of Colorimetric Biosensor
		6.2.1 Fabrication of Nanomaterial Based Colorimetric Sensors
			6.2.1.1 Nanomaterial
				6.2.1.1.1 Gold Nanoparticle
				6.2.1.1.2 Quantum Dots
				6.2.1.1.3 Magnetic Nanoparticle
				6.2.1.1.4 Carbon Nanoparticle
		6.2.2 Fabrication Technique of Nanomaterial Based Colorimetric Biosensor
			6.2.2.1 Physical Adsorption
			6.2.2.2 Membrane Entrapment
			6.2.2.3 Covalent Amalgamation
			6.2.2.4 Matrix Entrapment
		6.2.3 Nanomaterial Based Colorimetric Sensors
	6.3 Fabrication of Colorimetric Sensors Based on Chemoresponsive Dye
		6.3.1 Chemoresponsive Dye
		6.3.2 Fabrication Techniques of Chemoresponsive Dye-Based Colorimetric Biosensor
		6.3.3 Data Analysis of Nanomaterial Based and Chemo Responsive Dye-Based Colorimetric Biosensor
		6.3.4 Chemoresponsive Dye-Based Colorimetric Sensors
	6.4 Latest Trends in Colorimetric Biosensor
		6.4.1 One-Dimensional Photonic Crystal
		6.4.2 Smartphone
			6.4.2.1 Lab-on Smartphone
			6.4.2.2 Smartphone-Based on Fluorescence Imaging
			6.4.2.3 Smartphone-Based Electro-Analytical
			6.4.2.4 Smartphone Spectroscopy
		6.4.3 Lab-on-Chip (LOC) and Lab-on-Paper (LOP)
		6.4.4 Biomimetics
		6.4.5 Artificial Intelligence
	6.5 Advantages of Colorimetry Biosensors
		6.5.1 Specificity for Analyte
		6.5.2 Large Number of Samples Analyzed
		6.5.3 Less Time Consuming
		6.5.4 Simple and Economical
		6.5.5 Low Chemical Reagent Usage
		6.5.6 Reusage
		6.5.7 Online Measurements and Continuous Recording
		6.5.8 Ultra-Sensitive
	6.6 Disadvantages of Colorimetry Biosensors
		6.6.1 Specificity of pH, Temperature
		6.6.2 Waste Generation
	6.7 Applications of Colorimetry Biosensor
		6.7.1 Detection of Food Borne Microorganism and Toxins
		6.7.2 Detection of Sugar
		6.7.3 Detection of Alcohol
		6.7.4 Detection of Amino Acid
	6.8 Colorimetric Sensor and Food Safety and Security
	6.9 Challenges and Future of Colorimetric Biosensor
	6.10 Conclusion
	Bibliography
Chapter 7: Nanobiosensors: Principles, Techniques, and Innovation in Nanobiosensors
	7.1 Introduction
	7.2 Role of Nanomaterials in Food Analysis
		7.2.1 Pathogens
		7.2.2 Food Contaminants
		7.2.3 Sugars
	7.3 How Nanobiosensors Work
		7.3.1 Properties/Characteristics/Types/Classification/Material Used
			7.3.1.1 Nanoparticle Based Sensors
			7.3.1.2 Nanotube Based Sensors
			7.3.1.3 Nanowire Based Sensors
		7.3.2 Working Principle of Nanobiosensors
			7.3.2.1 Localized Surface Plasmon Resonance (LSPR) Based Nanobiosensors
			7.3.2.2 Electrochemical Biosensors
			7.3.2.3 Optical Biosensors/Optodes
			7.3.2.4 Fluorescent Nanobiosensors
		7.3.3 Scope of Nanobiosensors
		7.3.4 Properties, Advantage, and Disadvantage
	7.4 Different Fabrication Techniques of Nanobiosensor
		7.4.1 Enabling Technology
		7.4.2 Micro-Fabrication Technology
		7.4.3 SERS (Surface Enhanced Raman Spectroscopy) Technique
	7.5 Application of Nanobiosensor
		7.5.1 Enzyme Biosensors
		7.5.2 Detection of Pathogens
		7.5.3 Detection of Food Additives
		7.5.4 Detection of Pesticides
		7.5.5 Detection of Drug Residues
		7.5.6 Detection of Bisphenol A
	7.6 Different Innovation and Trends in Nanobiosensor and Its Limitations
		7.6.1 Limitations in the Use of Nanobiosensors
	7.7 Future Scope of Nanobiosensor
	7.8 Conclusion
	Bibliography
Chapter 8: Biosensors Involved in Fruit and Vegetable Processing Industries
	8.1 Introduction
	8.2 Overview of Different Sensors and Techniques Used in Fruits and Vegetables Processing Industry
		8.2.1 Techniques Involved
		8.2.2 Microcontroller Based Devices
		8.2.3 Bioelectric Nose (E-nose)
		8.2.4 Bioelectronic Tongue
	8.3 Potential Applications
		8.3.1 Determination of Maturity Indices
			8.3.1.1 Sensing Equipment
			8.3.1.2 Bioelectric Tongue and Nose
			8.3.1.3 Techniques Involved
		8.3.2 Detection of Gas Evolved during Ripening
			8.3.2.1 Sensing Equipment
			8.3.2.2 Bioelectric Nose
			8.3.2.3 Techniques Involved
		8.3.3 Detection of Pathogens and Microbial Diseases
			8.3.3.1 Sensing Equipment and E-nose
		8.3.4 Quality Determination and Quality Control
			8.3.4.1 Sensing Equipment
		8.3.5 Determination of Rate of Respiration of Fresh Fruit and Vegetables
			8.3.5.1 Sensing Equipment
		8.3.6 Sensors Applied in Packaging of Fruit and Vegetables
	8.4 Commentary and Future Scope
	8.5 Conclusions
	Bibliography
Chapter 9: Biosensors Involved in Dairy Industries
	9.1 Introduction
	9.2 Types of Biosensors Described for Application in Dairy Industry
	9.3 Application of Biosensors for Compositional Analysis of Milk
		9.3.1 Estimation of Carbohydrates
		9.3.2 Analysis of Milk Proteins
		9.3.3 Analysis of Cholesterol and Triglyceride
		9.3.4 Analysis of Enzymes
		9.3.5 Analysis of Hormones
		9.3.6 Analysis of Vitamins
	9.4 Biosensor for Detection of Adulteration in Milk
		9.4.1 Detection of Urea
		9.4.2 Detection of Vegetable Protein
		9.4.3 Detection of Melamine
	9.5 Biosensor for Detection of Contaminants in Milk
		9.5.1 Detection of Pathogenic Microorganisms and Toxins
			9.5.1.1 Salmonella ssp.
			9.5.1.2 E. coli
			9.5.1.3 Listeria ssp.
			9.5.1.4 S. aureus and Its Enterotoxin
			9.5.1.5 Other Microbial Contaminants
		9.5.2 Detection of Antibiotics
		9.5.3 Analysis of Pesticides
		9.5.4 Detection of Heavy Metals
		9.5.5 Detection of Aflatoxin
	9.6 Conclusion and Future Perspective
	Bibliography
Chapter 10: Bio/Chemical Sensors and Microsensors Involved in Meat Industry
	10.1 Introduction
	10.2 Meat Spoilage
	10.3 Sensors
	10.4 Biosensors in Meat Industry
		10.4.1 Metal Oxide Based Micro-sensors in Meat Industry
		10.4.2 Fibre-optic Based Sensor for Detection of Meat Spoilage
			10.4.2.1 Antibodies, Labelling and Sandwich Immunofluorescence Assay
		10.4.3 Electrochemical Based Sensors
			10.4.3.1 Detection of Meat and Fish Spoilage
			10.4.3.2 Detection of Donkey, Horse, or Pig Meat
		10.4.4 Chemiluminescence Based Biosensor for Detection of Biogenic Amines
		10.4.5 Colorimetric Based Biosensor for Detection of Biogenic Amines
	10.5 IoT Based Devices
	10.6 IoT Based Technology for Prevention of Food Waste
	10.7 Basic IoT Structure
	10.8 IoT for Food Quality Monitoring and Smart Packaging
	10.9 Senor Technology in IoT Based Food Quality Monitoring
		10.9.1 Humidity
		10.9.2 Detection of Oxygen and Carbon Dioxide
		10.9.3 pH Change
		10.9.4 Time-Temperature Sensor
		10.9.5 Intelligent Sensor Signal Processing in IoT Based Food Quality Monitoring
	10.10 Conclusion
	Bibliography
Chapter 11: Toxicant/Pesticide Residue/Adulteration Detection in Some Valuable Plantation Products
	11.1 Introduction
	11.2 Common Adulterants of Valuable Plantation Products
	11.3 Toxicity of Adulterants in Valuable Plantation Products
		11.3.1 Regulatory Action on Adulteration in Valuable Plantation Products
	11.4 Conventional Methods for Adulterants Identification
	11.5 Spectroscopy Methods for Adulterants Identification
	11.6 FSSAI Methods for Adulterants Identification
	11.7 Fabrication of Biosensor for Adulterants Identification
		11.7.1 Enzyme Based Biosensors
			11.7.1.1 For Polyphenols Determination
			11.7.1.2 For Aflatoxin Detection
			11.7.1.3 For Methyl Parathion Detection
		11.7.2 Microbial based Biosensors
			11.7.2.1 Based on Nanotechnology
				11.7.2.1.1 Nano Biosensors for Tea and Coffee Analysis
			11.7.2.2 Based on Artificial Intelligence
	11.8 Future Scope for Biosensor in Valuable Plantation Products
	11.9 Conclusion
	Acknowledgement
	Bibliography
Chapter 12: Biosensors Involved in Fermented Product
	12.1 Introduction
	12.2 Application of Biosensor in Fermentation Monitoring and Quality of the Fermented Foods
		12.2.1 Glucose Biosensor
		12.2.2 Ethanol Biosensor
		12.2.3 Lactate Biosensor
		12.2.4 Biosensor for Detection of Malic Acid
		12.2.5 Biosensors for Detection of Glycerol in Fermented Food
		12.2.6 Multi-analyte Biosensor for Fermented Food
		12.2.7 Biosensor for Phenolic Compounds
	12.3 Biosensor for Fermented Food Quality and Safety
		12.3.1 Biogenic Amine Biosensor
		12.3.2 Biosensor for Detection of Acetaldehyde
		12.3.3 Biosensor for Microbial Contaminant
		12.3.4 Lysozyme Biosensor
		12.3.5 Ochratoxin A, Aflatoxin B1 Biosensor
	12.4 Application of Bioelectronic Tongue in Fermented Foods
	12.5 Conclusions and Future Perspectives
	Bibliography
Chapter 13: Detection of Heavy Metals in Water Using Biosensor
	13.1 Introduction
		13.1.1 Water: Basis of Life
		13.1.2 Heavy Metals: Nutritional or Toxic Component?
	13.2 Biosensors for Water Toxicity Determination
		13.2.1 Enzyme Based Sensor for Detection of Heavy Metals
		13.2.2 Microbe Based or Cell-Based Biosensor
		13.2.3 Electrochemical Biosensors for Determination of Heavy Metal in Water
		13.2.4 Optical Based Biosensors
			13.2.4.1 Colorimetric Sensor
			13.2.4.2 SPR Based Biosensor
			13.2.4.3 Localized Surface Plasmon Resonance (LSPR) Based Biosensors
			13.2.4.4 Fluorescence Based Biosensors
				13.2.4.4.1 Graphene Based Biosensors
				13.2.4.4.2 CDs Based Biosensor
		13.2.5 Surface-Enhanced Raman Spectroscopy
		13.2.6 DNA-Based Biosensor
		13.2.7 Immunosensors
	13.3 Advancement and Future Scope of Biosensor
	13.4 Conclusions
	Bibliography
Chapter 14: Application of Biosensors in Food Safety
	14.1 Introduction
	14.2 Biosensors for Food Security
		14.2.1 Detection of Microorganisms Pathogens and Toxins
			14.2.1.1 Functionalization of Graphene Device
		14.2.2 Detection of Pesticide and Antibiotic Residues
		14.2.3 Detection of Heavy Metals
		14.2.4 Detection of the Marine Biotoxins
		14.2.5 Detection of Biogenic Amines
		14.2.6 Detection of Mycotoxins
		14.2.7 Applications of Biosensors for Detection of Polyphenols and Fatty Acids
		14.2.8 Applications of Biosensors for Detection of Antinutrients
	14.3 Other Applications of Biosensors for Food Quality and Safety
	14.4 Conclusion
	Bibliography
Chapter 15: Feasibility of Biosensors
	15.1 Introduction
	15.2 Marketability of Biosensor
	15.3 Commercial Biosensors in the Various Sector
		15.3.1 Clinical Analysis
		15.3.2 Food Analysis
		15.3.3 Environmental Analysis
		15.3.4 Biothreat/Biowarfare
	15.4 Feasibility of Biosensor in Food and Agriculture
	15.5 Advantages of Biosensor
	15.6 Limitations of Biosensor
	15.7 Money Issues Related to Biosensors
	15.8 Components of Biosensor
	15.9 Pre-requisites for Biosensor
	15.10 The Development Cost of Biosensors
	15.11 Development of Cost-Effective Biosensors
		15.11.1 Microfluidics in Biosensing Techniques
		15.11.2 Nanomaterials in Biosensing Techniques
		15.11.3 Point of Care (POC) in Biosensing Technology
	15.12 Conclusion
	Bibliography
Index




نظرات کاربران