دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Poonam Mishra. Partha Pratim Sahu
سری:
ISBN (شابک) : 036720164X, 9780367201647
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 273
[274]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Biosensors in Food Safety and Quality: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حسگرهای زیستی در ایمنی و کیفیت مواد غذایی: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بیوسنسورهای کالریمتری: اصول اصلی، تکنیکها، ساخت و کاربرد / Amit Baran Das -- بیوسنسورهای نوری: اصول، تکنیکها، طراحی حسگر و کاربرد آنها در تجزیه و تحلیل مواد غذایی / P P Sahu - بیوسنسورهای پیزوالکتریک: اصل، تکنیکها و کاربرد آنها در تجزیه و تحلیل مواد غذایی / ص میشرا.
Calorimetric biosensors : core principles, techniques, fabrication and application / Amit Baran Das -- Optical biosensors: principles, techniques, sensor design and their application in food analysis / P P Sahu -- Piezoelectric biosensors: principle, techniques, and their application in food analysis / P. Mishra.
Cover Half Title Title Page Copyright Page Table of Contents Editors Contributors Chapter 1: Introduction 1.1 Introduction 1.1.1 History 1.1.2 Key Elements and Characteristics of Biosensors 1.1.2.1 Analyte 1.1.2.2 Bioreceptors 1.1.2.3 Transducer 1.1.2.4 Electronics 1.1.2.5 Display 1.1.3 Classification 1.1.3.1 Transducing Element 1.1.3.1.1 Mass Based Biosensor 1.1.3.1.1.1 Magnetoelectric 1.1.3.1.1.2 Piezoelectric 1.1.3.1.1.2.1 Quartz Crystal Microbalance (QCM) 1.1.3.1.1.2.2 Surface Acoustic Wave (SAW) 1.1.3.1.1.2.3 Capacitive Micro-Machined Ultrasonic Transducers (CMUTs) 1.1.3.1.1.2.4 Bulk Acoustic Wave (BAW) Piezoelectric Sensor 1.1.3.1.1.2.4.1 Thickness Shear Mode (TSM) Resonator 1.1.3.1.1.2.4.2 Shear Horizontal Acoustic Plate Mode (SHAPM) 1.1.3.1.2 Electrochemical Biosensor 1.1.3.1.2.1 Potentiometric Sensors 1.1.3.1.2.2 Amperometric 1.1.3.1.2.3 Conductometric 1.1.3.1.3 Optical Biosensor 1.1.3.1.3.1 Fluorescence-Based Biosensors 1.1.3.1.3.2 Surface Plasmon Resonance (SPR) 1.1.3.1.3.3 Raman and FTIR 1.1.3.1.3.4 Fiber Optics 1.1.3.2 Bio-Recognition Element 1.1.3.2.1 Enzyme Based Biosensor 1.1.3.2.2 Immuno Biosensors 1.1.3.2.3 Microbial Biosensors 1.1.3.3 Characteristics of a Biosensor 1.1.4 Food Analysis and Biosensors 1.1.5 Conclusion Bibliography Chapter 2: Calorimetric Biosensors: Core Principles, Techniques, Fabrication and Application 2.1 Introduction 2.2 Thermal Biosensors: Working Principles 2.2.1 Transducer 2.2.2 Instrumentation 2.2.3 Conventional Device 2.2.4 Mini Thermometric System 2.2.5 Micro Thermometric System 2.2.6 Thermopile-Based Microbiosensor 2.2.7 Multisensing Thermometric System 2.2.8 Hybrid Sensors 2.3 Categories of Calorimeter Based on Design Principles 2.4 Application of Calorimetric Based Biosensors 2.4.1 Enzyme Activity 2.4.2 Clinical Monitoring 2.4.3 Process Monitoring 2.4.4 Multianalyte Determination 2.4.5 In Non-Aqueous Media 2.4.6 Other Applications 2.4.7 Food 2.4.8 Environmental 2.5 Advantages and Disadvantage of Calorimetric Based Biosensors 2.5.1 Advantages 2.5.2 Limitations of Calorimetric Based Biosensors 2.6 Future Developments 2.6.1 Telemedicine 2.7 Conclusion Bibliography Chapter 3: Optical Biosensors: Principles, Techniques, Sensor Design and Their Application in Food Analysis 3.1 Introduction 3.2 Different Optical Biosensors 3.2.1 Fiber Optic Biosensors 3.2.1.1 Classification of Fiber Optic Biosensors 3.2.1.2 Enzyme Based 3.2.2 Immobilization Methods 3.2.2.1 Binding to Carrier 3.2.2.2 Immobilization by Binding 3.2.2.3 Immunoassay Based Immobilization 3.2.2.4 Nucleic Acid Based Immobilization 3.2.2.5 Whole Cell Based Immobilization 3.2.2.6 Biomimetic Based 3.2.3 Types of Detectors in Biosensors 3.2.3.1 Photo Multiplier Tubes (PMT) 3.2.3.2 Avalanche Photodiode (APD) 3.2.3.3 Charge Coupled Device (CCD) 3.2.3.4 Light sources and Signal Delivery Systems/Fiber Optic Cables 3.3 Surface Plasmon Resonance (SPR) Biosensors 3.3.1 Advantages of SPR 3.4 Application of Optical Biosensors for Food Quality and Safety 3.4.1 Pathogens Detection Method 3.4.2 Pesticide Residues Detection Method 3.4.3 Veterinary Drug Residues Detection in Animal Derived Products 3.4.4 Microbial Pollution and Hygiene 3.4.5 Monitoring of Heavy Metals, Adulterants, and Other Toxic Compounds Content in Food Items 3.4.6 Evanescent Wave Fluorescence Biosensors 3.4.7 Detection of Hygiene and Microbial Contamination 3.4.8 Development of Optical Biosensors Apart from Food Industry 3.5 Future Scope in Optical Fiber 3.6 Conclusion References Chapter 4: Piezoelectric Biosensors: Principle, Techniques, and Their Application in Food Analysis 4.1 Introduction 4.2 Principle 4.3 Materials Used for Piezoelectric Assay 4.4 Fabrication of Piezoelectric Sensor 4.4.1 Antigen Antibody-Based 4.4.2 Poly (Vinylidene Fluoride-Trifluoroethylene) (P(VDF-TrFE))-Zinc Oxide Based Sensor 4.4.3 Sb-Doped p-ZnO NW Films for Self-Powered Piezoelectric Strain Sensors 4.4.4 Zinc-Oxide Based Micro Electromechanical System (MEMS) Acoustic Sensor 4.4.5 Disposable Piezoelectric Vibration Sensors with PDMS/ZnO Transducers on Printed Graphene-Cellulose Electrodes 4.5 Immobilization Procedures of Bioreceptors 4.6 Applications of Piezoelectric Assay 4.6.1 Detection of TB 4.6.2 Detection of Salmonella typhimurium 4.6.3 Quality Control of Modified Atmosphere Packages 4.6.4 Quality Control of Fish and Meat 4.6.5 Adulteration of Bovine Milk 4.6.6 Recognition of Eating Habits and Nutrition Intake 4.7 Merits and Demerits of Piezoelectric Biosensor 4.8 Commentary and Future Scope in Piezoelectric Sensors Bibliography Chapter 5: Electrochemical Sensors: Core Principle, New Fabrication Trends, and Their Applications 5.1 Introduction 5.2 Working Principle of Electrochemical Sensor 5.3 Major Components of Electrochemical Sensor 5.4 Technological Aspect and Fabrication 5.5 Different Electrochemical Sensors 5.5.1 Cyclic Voltammetry (CV) 5.5.2 Biosensing Using Electrochemical Impedance Spectroscopy (EIS) 5.5.3 Biosensing Using Field-Effect Transistor (FET) 5.5.4 Electrochemical Surface-Plasmon Resonance (EC-SPR) Based Sensor 5.5.5 Biosensing Waveguide-Based Techniques and Electrochemistry 5.5.6 Magnetic Field Based Electrochemical Biosensors 5.5.7 Electrochemical Signal Transduction for the Biosensing 5.6 Application of Electrochemical Sensor 5.6.1 Electrochemical Sensors for Environmental Monitoring 5.6.2 Electrochemical Sensors in Analytical Chemistry 5.6.3 Electrochemical Sensors in Clinic Analysis 5.6.4 Nanomaterial-Based No-Wash Electrochemical Biosensors 5.6.5 Electrochemical Sensors in Food Analysis 5.7 Limitation and Future Scope of Electrochemical Sensors 5.8 Conclusion Bibliography Chapter 6: Colorimetric Biosensors: Principal, Fabrication, and Application in Food Analysis 6.1 Introduction 6.2 Fabrication of Colorimetric Biosensor 6.2.1 Fabrication of Nanomaterial Based Colorimetric Sensors 6.2.1.1 Nanomaterial 6.2.1.1.1 Gold Nanoparticle 6.2.1.1.2 Quantum Dots 6.2.1.1.3 Magnetic Nanoparticle 6.2.1.1.4 Carbon Nanoparticle 6.2.2 Fabrication Technique of Nanomaterial Based Colorimetric Biosensor 6.2.2.1 Physical Adsorption 6.2.2.2 Membrane Entrapment 6.2.2.3 Covalent Amalgamation 6.2.2.4 Matrix Entrapment 6.2.3 Nanomaterial Based Colorimetric Sensors 6.3 Fabrication of Colorimetric Sensors Based on Chemoresponsive Dye 6.3.1 Chemoresponsive Dye 6.3.2 Fabrication Techniques of Chemoresponsive Dye-Based Colorimetric Biosensor 6.3.3 Data Analysis of Nanomaterial Based and Chemo Responsive Dye-Based Colorimetric Biosensor 6.3.4 Chemoresponsive Dye-Based Colorimetric Sensors 6.4 Latest Trends in Colorimetric Biosensor 6.4.1 One-Dimensional Photonic Crystal 6.4.2 Smartphone 6.4.2.1 Lab-on Smartphone 6.4.2.2 Smartphone-Based on Fluorescence Imaging 6.4.2.3 Smartphone-Based Electro-Analytical 6.4.2.4 Smartphone Spectroscopy 6.4.3 Lab-on-Chip (LOC) and Lab-on-Paper (LOP) 6.4.4 Biomimetics 6.4.5 Artificial Intelligence 6.5 Advantages of Colorimetry Biosensors 6.5.1 Specificity for Analyte 6.5.2 Large Number of Samples Analyzed 6.5.3 Less Time Consuming 6.5.4 Simple and Economical 6.5.5 Low Chemical Reagent Usage 6.5.6 Reusage 6.5.7 Online Measurements and Continuous Recording 6.5.8 Ultra-Sensitive 6.6 Disadvantages of Colorimetry Biosensors 6.6.1 Specificity of pH, Temperature 6.6.2 Waste Generation 6.7 Applications of Colorimetry Biosensor 6.7.1 Detection of Food Borne Microorganism and Toxins 6.7.2 Detection of Sugar 6.7.3 Detection of Alcohol 6.7.4 Detection of Amino Acid 6.8 Colorimetric Sensor and Food Safety and Security 6.9 Challenges and Future of Colorimetric Biosensor 6.10 Conclusion Bibliography Chapter 7: Nanobiosensors: Principles, Techniques, and Innovation in Nanobiosensors 7.1 Introduction 7.2 Role of Nanomaterials in Food Analysis 7.2.1 Pathogens 7.2.2 Food Contaminants 7.2.3 Sugars 7.3 How Nanobiosensors Work 7.3.1 Properties/Characteristics/Types/Classification/Material Used 7.3.1.1 Nanoparticle Based Sensors 7.3.1.2 Nanotube Based Sensors 7.3.1.3 Nanowire Based Sensors 7.3.2 Working Principle of Nanobiosensors 7.3.2.1 Localized Surface Plasmon Resonance (LSPR) Based Nanobiosensors 7.3.2.2 Electrochemical Biosensors 7.3.2.3 Optical Biosensors/Optodes 7.3.2.4 Fluorescent Nanobiosensors 7.3.3 Scope of Nanobiosensors 7.3.4 Properties, Advantage, and Disadvantage 7.4 Different Fabrication Techniques of Nanobiosensor 7.4.1 Enabling Technology 7.4.2 Micro-Fabrication Technology 7.4.3 SERS (Surface Enhanced Raman Spectroscopy) Technique 7.5 Application of Nanobiosensor 7.5.1 Enzyme Biosensors 7.5.2 Detection of Pathogens 7.5.3 Detection of Food Additives 7.5.4 Detection of Pesticides 7.5.5 Detection of Drug Residues 7.5.6 Detection of Bisphenol A 7.6 Different Innovation and Trends in Nanobiosensor and Its Limitations 7.6.1 Limitations in the Use of Nanobiosensors 7.7 Future Scope of Nanobiosensor 7.8 Conclusion Bibliography Chapter 8: Biosensors Involved in Fruit and Vegetable Processing Industries 8.1 Introduction 8.2 Overview of Different Sensors and Techniques Used in Fruits and Vegetables Processing Industry 8.2.1 Techniques Involved 8.2.2 Microcontroller Based Devices 8.2.3 Bioelectric Nose (E-nose) 8.2.4 Bioelectronic Tongue 8.3 Potential Applications 8.3.1 Determination of Maturity Indices 8.3.1.1 Sensing Equipment 8.3.1.2 Bioelectric Tongue and Nose 8.3.1.3 Techniques Involved 8.3.2 Detection of Gas Evolved during Ripening 8.3.2.1 Sensing Equipment 8.3.2.2 Bioelectric Nose 8.3.2.3 Techniques Involved 8.3.3 Detection of Pathogens and Microbial Diseases 8.3.3.1 Sensing Equipment and E-nose 8.3.4 Quality Determination and Quality Control 8.3.4.1 Sensing Equipment 8.3.5 Determination of Rate of Respiration of Fresh Fruit and Vegetables 8.3.5.1 Sensing Equipment 8.3.6 Sensors Applied in Packaging of Fruit and Vegetables 8.4 Commentary and Future Scope 8.5 Conclusions Bibliography Chapter 9: Biosensors Involved in Dairy Industries 9.1 Introduction 9.2 Types of Biosensors Described for Application in Dairy Industry 9.3 Application of Biosensors for Compositional Analysis of Milk 9.3.1 Estimation of Carbohydrates 9.3.2 Analysis of Milk Proteins 9.3.3 Analysis of Cholesterol and Triglyceride 9.3.4 Analysis of Enzymes 9.3.5 Analysis of Hormones 9.3.6 Analysis of Vitamins 9.4 Biosensor for Detection of Adulteration in Milk 9.4.1 Detection of Urea 9.4.2 Detection of Vegetable Protein 9.4.3 Detection of Melamine 9.5 Biosensor for Detection of Contaminants in Milk 9.5.1 Detection of Pathogenic Microorganisms and Toxins 9.5.1.1 Salmonella ssp. 9.5.1.2 E. coli 9.5.1.3 Listeria ssp. 9.5.1.4 S. aureus and Its Enterotoxin 9.5.1.5 Other Microbial Contaminants 9.5.2 Detection of Antibiotics 9.5.3 Analysis of Pesticides 9.5.4 Detection of Heavy Metals 9.5.5 Detection of Aflatoxin 9.6 Conclusion and Future Perspective Bibliography Chapter 10: Bio/Chemical Sensors and Microsensors Involved in Meat Industry 10.1 Introduction 10.2 Meat Spoilage 10.3 Sensors 10.4 Biosensors in Meat Industry 10.4.1 Metal Oxide Based Micro-sensors in Meat Industry 10.4.2 Fibre-optic Based Sensor for Detection of Meat Spoilage 10.4.2.1 Antibodies, Labelling and Sandwich Immunofluorescence Assay 10.4.3 Electrochemical Based Sensors 10.4.3.1 Detection of Meat and Fish Spoilage 10.4.3.2 Detection of Donkey, Horse, or Pig Meat 10.4.4 Chemiluminescence Based Biosensor for Detection of Biogenic Amines 10.4.5 Colorimetric Based Biosensor for Detection of Biogenic Amines 10.5 IoT Based Devices 10.6 IoT Based Technology for Prevention of Food Waste 10.7 Basic IoT Structure 10.8 IoT for Food Quality Monitoring and Smart Packaging 10.9 Senor Technology in IoT Based Food Quality Monitoring 10.9.1 Humidity 10.9.2 Detection of Oxygen and Carbon Dioxide 10.9.3 pH Change 10.9.4 Time-Temperature Sensor 10.9.5 Intelligent Sensor Signal Processing in IoT Based Food Quality Monitoring 10.10 Conclusion Bibliography Chapter 11: Toxicant/Pesticide Residue/Adulteration Detection in Some Valuable Plantation Products 11.1 Introduction 11.2 Common Adulterants of Valuable Plantation Products 11.3 Toxicity of Adulterants in Valuable Plantation Products 11.3.1 Regulatory Action on Adulteration in Valuable Plantation Products 11.4 Conventional Methods for Adulterants Identification 11.5 Spectroscopy Methods for Adulterants Identification 11.6 FSSAI Methods for Adulterants Identification 11.7 Fabrication of Biosensor for Adulterants Identification 11.7.1 Enzyme Based Biosensors 11.7.1.1 For Polyphenols Determination 11.7.1.2 For Aflatoxin Detection 11.7.1.3 For Methyl Parathion Detection 11.7.2 Microbial based Biosensors 11.7.2.1 Based on Nanotechnology 11.7.2.1.1 Nano Biosensors for Tea and Coffee Analysis 11.7.2.2 Based on Artificial Intelligence 11.8 Future Scope for Biosensor in Valuable Plantation Products 11.9 Conclusion Acknowledgement Bibliography Chapter 12: Biosensors Involved in Fermented Product 12.1 Introduction 12.2 Application of Biosensor in Fermentation Monitoring and Quality of the Fermented Foods 12.2.1 Glucose Biosensor 12.2.2 Ethanol Biosensor 12.2.3 Lactate Biosensor 12.2.4 Biosensor for Detection of Malic Acid 12.2.5 Biosensors for Detection of Glycerol in Fermented Food 12.2.6 Multi-analyte Biosensor for Fermented Food 12.2.7 Biosensor for Phenolic Compounds 12.3 Biosensor for Fermented Food Quality and Safety 12.3.1 Biogenic Amine Biosensor 12.3.2 Biosensor for Detection of Acetaldehyde 12.3.3 Biosensor for Microbial Contaminant 12.3.4 Lysozyme Biosensor 12.3.5 Ochratoxin A, Aflatoxin B1 Biosensor 12.4 Application of Bioelectronic Tongue in Fermented Foods 12.5 Conclusions and Future Perspectives Bibliography Chapter 13: Detection of Heavy Metals in Water Using Biosensor 13.1 Introduction 13.1.1 Water: Basis of Life 13.1.2 Heavy Metals: Nutritional or Toxic Component? 13.2 Biosensors for Water Toxicity Determination 13.2.1 Enzyme Based Sensor for Detection of Heavy Metals 13.2.2 Microbe Based or Cell-Based Biosensor 13.2.3 Electrochemical Biosensors for Determination of Heavy Metal in Water 13.2.4 Optical Based Biosensors 13.2.4.1 Colorimetric Sensor 13.2.4.2 SPR Based Biosensor 13.2.4.3 Localized Surface Plasmon Resonance (LSPR) Based Biosensors 13.2.4.4 Fluorescence Based Biosensors 13.2.4.4.1 Graphene Based Biosensors 13.2.4.4.2 CDs Based Biosensor 13.2.5 Surface-Enhanced Raman Spectroscopy 13.2.6 DNA-Based Biosensor 13.2.7 Immunosensors 13.3 Advancement and Future Scope of Biosensor 13.4 Conclusions Bibliography Chapter 14: Application of Biosensors in Food Safety 14.1 Introduction 14.2 Biosensors for Food Security 14.2.1 Detection of Microorganisms Pathogens and Toxins 14.2.1.1 Functionalization of Graphene Device 14.2.2 Detection of Pesticide and Antibiotic Residues 14.2.3 Detection of Heavy Metals 14.2.4 Detection of the Marine Biotoxins 14.2.5 Detection of Biogenic Amines 14.2.6 Detection of Mycotoxins 14.2.7 Applications of Biosensors for Detection of Polyphenols and Fatty Acids 14.2.8 Applications of Biosensors for Detection of Antinutrients 14.3 Other Applications of Biosensors for Food Quality and Safety 14.4 Conclusion Bibliography Chapter 15: Feasibility of Biosensors 15.1 Introduction 15.2 Marketability of Biosensor 15.3 Commercial Biosensors in the Various Sector 15.3.1 Clinical Analysis 15.3.2 Food Analysis 15.3.3 Environmental Analysis 15.3.4 Biothreat/Biowarfare 15.4 Feasibility of Biosensor in Food and Agriculture 15.5 Advantages of Biosensor 15.6 Limitations of Biosensor 15.7 Money Issues Related to Biosensors 15.8 Components of Biosensor 15.9 Pre-requisites for Biosensor 15.10 The Development Cost of Biosensors 15.11 Development of Cost-Effective Biosensors 15.11.1 Microfluidics in Biosensing Techniques 15.11.2 Nanomaterials in Biosensing Techniques 15.11.3 Point of Care (POC) in Biosensing Technology 15.12 Conclusion Bibliography Index