ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design

دانلود کتاب مهندسی فرآیندهای زیستی: سینتیک، پایداری و طراحی راکتور

Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design

مشخصات کتاب

Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design

ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 0128210125, 9780128210123 
ناشر: Elsevier Science Ltd 
سال نشر: 2020 
تعداد صفحات: 939 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 32 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی فرآیندهای زیستی: سینتیک، پایداری و طراحی راکتور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی فرآیندهای زیستی: سینتیک، پایداری و طراحی راکتور



مهندسی فرآیندهای زیستی: سینتیک، پایداری و طراحی راکتور، ویرایش سوم، یک کتاب درسی سیستماتیک و جامع در مورد سینتیک فرآیندهای زیستی، تبدیل مولکولی، سیستم‌های فرآیندهای زیستی، پایداری و مهندسی واکنش است. این کتاب به بررسی مبانی مربوطه سینتیک شیمیایی، راکتورهای دسته ای و پیوسته، بیوشیمی، میکروبیولوژی، بیولوژی مولکولی، مهندسی واکنش و مهندسی سیستم های زیستی می پردازد و اصول کلیدی را معرفی می کند که مهندسان فرآیندهای زیستی را قادر می سازد در تجزیه و تحلیل، بهینه سازی، انتخاب روش های کشت، طراحی شرکت کنند. و کنترل مداوم بر تبدیلات بیولوژیکی و شیمیایی مولکولی. درمان کمی فرآیندهای زیستی موضوع اصلی این متن است، با این حال تکنیک‌ها و کاربردهای پیشرفته‌تر نیز پوشش داده شده است.

  • شامل مولکول های بیولوژیکی و اصول اولیه واکنش شیمیایی، زیست شناسی سلولی و مهندسی ژنتیک است
  • سینتیک و کاتالیز را در سطوح مولکولی و سلولی به همراه اصول تخمیر توصیف می کند
  • موضوعات و رساله‌های پیشرفته‌ای را در مقررات تعاملی آنزیم و مولکولی پوشش می‌دهد، همچنین کاتالیز جامد را پوشش می‌دهد
  • سینتیک فرآیندهای زیستی، اثرات انتقال جرم، تجزیه و تحلیل، کنترل و طراحی راکتور را بررسی می‌کند

توضیحاتی درمورد کتاب به خارجی

Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Third Edition, is a systematic and comprehensive textbook on bioprocess kinetics, molecular transformation, bioprocess systems, sustainability and reaction engineering. The book reviews the relevant fundamentals of chemical kinetics, batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering and bioprocess systems engineering, introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, selection of cultivation methods, design and consistent control over molecular biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme in this text, however more advanced techniques and applications are also covered.

  • Includes biological molecules and chemical reaction basics, cell biology and genetic engineering
  • Describes kinetics and catalysis at molecular and cellular levels, along with the principles of fermentation
  • Covers advanced topics and treatise in interactive enzyme and molecular regulations, also covering solid catalysis
  • Explores bioprocess kinetics, mass transfer effects, reactor analysis, control and design


فهرست مطالب

Cover
Bioprocess Engineering:
Kinetics, Sustainability, and Reactor Design
Copyright
Chapter 1 - What is bioprocess engineering?
	1.1 - Biological cycle
	1.2 - Bioprocess engineering applications
	1.3 - Scales: living organism and manufacturing
	1.4 - Green chemistry
	1.5 - Sustainability
	1.6 - Biorefinery
	1.7 - Biotechnology and bioprocess engineering
	1.8 - Mathematics, biology, and engineering
	1.9 - The story of penicillin: the dawn of bioprocess engineering
	1.10 - Bioprocesses: regulatory constraints
	1.11 - The pillars of bioprocess kinetics and systems engineering
	1.12 - Summary
	Problems
	References
		D. History of Penicillin
	Further readings
		A. Green Chemistry
		B. Sustainability
		C. Biorefinery
		D. History of Penicillin
		E. Regulatory Issues
Chapter 2 - An overview of biological basics
	Abstract
	Keywords
	Chapter outline
	2.1 - Cells and organisms
		2.1.1 - Microbial diversity
		2.1.2 - How cells are named
		2.1.3 - Prokaryotes
			2.1.3.1 - Eubacteria
			2.1.3.2 - Archaebacteria
		2.1.4 - Eukaryotes
	2.2 - Viruses
	2.3 - Prions
	2.4 - Stem cell
	2.5 - Cell chemistry
		2.5.1 - Amino acids and proteins
		2.5.2 - Monosaccharides
			2.5.2.1 - Aldoses
				2.5.2.1.1 - D-hexoses
				2.5.2.1.2 - Pentoses
				2.5.2.1.3 - D-tetroses
				2.5.2.1.4 - D-trioses
			2.5.2.2 - Ketoses
				2.5.2.2.1 - Ketohexoses
				2.5.2.2.2 - Ketopentoses
				2.5.2.2.3 - Ketotetroses
				2.5.2.2.4 - Ketotriose
			2.5.2.3 - Deoxysugars
		2.5.3 - Disaccharides
		2.5.4 - Polysaccharides
			2.5.4.1 - Starch
			2.5.4.2 - Glycogen
			Fructan
			2.5.4.4 - Cellulose
			2.5.4.5 - Hemicelluloses
		2.5.5 - Phytic acid and inositol
		2.5.6 - Chitin and chitosan
		2.5.7 - Lignin
		2.5.8 - Lipids, fats, and steroids
		2.5.9 - Nucleic acids, RNA, and DNA
	2.6 - Cell feed
		2.6.1 - Macronutrients
		2.6.2 - Micronutrients
		2.6.3 - Growth media
	2.7 - Non earthly/unnatural biological agents
	2.8 - Summary
	Problems
	References
	Further readings
Chapter 3 - An overview of chemical reaction analysis
	3.1 - Chemical species
	3.2 - Chemical reactions
	3.3 - Reaction rates
		3.3.1 - Definition of the rate of reaction, rA
		3.3.2 - Rate of a single irreversible reaction
		3.3.3 - Rate of an elementary reaction
		3.3.4 - Rate of a reversible reaction
		3.3.5 - Rates of multiple reactions
		3.3.6 - Rate coefficients
	3.4 - Approximate reactions
	3.5 - Stoichiometry
	3.6 - Yield and yield factor
	3.7 - Reaction rates near equilibrium
	3.8 - Energy regularity
	3.9 - Classification of multiple reactions and selectivity
	3.10 - Coupled reactions
	3.11 - Reactor mass balances
	3.12 - Reaction energy balances
	3.13 - Reactor momentum balance
	3.14 - Ideal reactors
	3.15 - Bioprocess systems optimization
	3.16 - Summary
	Problems
	Further readings
Chapter 4 - Batch reactor
	4.1 - Isothermal batch reactors
	4.2 - Batch reactor sizing
	4.3 - Nonisothermal batch reactors
	4.4 - Numerical solutions of batch reactor problems
	4.5 - The reactor pinch graph
	4.6 - Summary
	Problems
	References
Chapter 5 - Ideal flow reactors
	Chapter outline
	5.1 - Commonly useful parameters
	5.2 - Plug flow reactor (PFR)
	5.3 - Continuous stirred tank reactor (CSTR) and chemostat
	5.4 - Multiple reactors
	5.5 - Recycle reactors
	5.6 - PFR with distributed feeding and withdrawing
		5.6.1 - Distributed feed
		5.6.2 - Membrane reactor
	5.7 - Reactive distillation
	5.8 - PFR or CSTR?
	5.9 - Steady nonisothermal flow reactors
	5.10 - Reactive extraction
	5.11 - Graphic solutions using batch concentration data
		5.11.1 - Solution of A PFR using batch concentration data
		5.11.2 - Solution of A CSTR using batch concentration data
	5.12 - Summary
	Problems
	Further readings
Chapter 6 - Kinetic theory and reaction kinetics
	Chapter outline
	6.1 - Elementary kinetic theory
		6.1.1 - Distribution laws
		6.1.2 - Collision rate
	6.2 - Collision theory of reaction rates
	6.3 - Reaction rate analysis/approximation
		6.3.1 - Fast equilibrium step (FES) approximation
		6.3.2 - Pseudosteady state hypothesis (PSSH)
	6.4 - Unimolecular reactions
	6.5 - Free radicals
	6.6 - Kinetics of acid hydrolysis
	6.7 - Parametric estimation
	6.8 - Summary
	Problems
	References
Chapter 7 - Enzymes
	Chapter outline
	7.1 - How enzymes work?
	7.2 - Simple enzyme kinetics
		7.2.1 - The fast equilibrium step (FES) assumption
		7.2.2 - The pseudosteady-state hypothesis (PSSH)
		7.2.3 - Specific activity
	7.3 - Competitive and allosteric enzyme kinetics
		7.3.1 - Reversible reactions
		7.3.2 - Competitive reactions
		7.3.3 - Reactions with nbound substrates
		7.3.4 - Enzyme-substituted reactions–the ping-pong mechanism
		7.3.5 - Bimolecular reactions on allosteric enzymes
	7.4 - Enzyme inhibition
		7.4.1 - Allosteric inhibition
			7.4.1.1 - Noncompetitive inhibition: β = 0 and αS = 1
			7.4.1.2 - Uncompetitive inhibition: β = 0 and KI → ∞ while αS/KI is finite
		7.4.2 - Competitive inhibition
	7.5 - Higher order substrate kinetics
	7.6 - pH effects
	7.7 - Temperature effects
	7.8 - Insoluble substrates and/or high-enzyme loading
	7.9 - Immobilized enzyme systems
		7.9.1 - Methods of immobilization
			7.9.1.1 - Entrapment
			7.9.1.2 - Surface immobilization
		7.9.2 - Electrostatic and steric effects in immobilized enzyme systems
	7.10 - Analysis of bioprocess with enzymatic reactions
	7.11 - Large-scale production of enzymes
	7.12 - Medical and industrial utilization of enzymes
	7.13 - Kinetic approximation: why Michaelis-Menten equation works
		7.13.1 - Pseudosteady state hypothesis (PSSH)
		7.13.2 - Fast equilibrium step (FES) approximation
		7.13.3 - Modified-fast equilibrium approximation
	7.14 - Summary
	Problems
	Further readings
Chapter 8 - Chemical reactions on solid surfaces
	8.1 - Catalysis
	8.2 - How does reaction with solid occur?
	8.3 - Langmuir: theoretical basis of adsorption kinetics
	8.4 - Idealization of nonideal surfaces
		8.4.1 - UniLan adsorption isotherm
		8.4.2 - Common empirical approximate isotherms
	8.5 - Cooperative adsorption
		8.5.1 - Cooperative adsorption of single species
		8.5.2 - Competitive cooperative adsorption
		8.5.3 - Pore size and surface characterization
	8.6 - LHHW: surface reactions with rate-controlling steps
	8.7 - Why rate approximation such as LHHW works?
	8.8 - Chemical reactions on nonideal surfaces based on the distribution of interaction energy
	8.9 - Cooperative catalysis
		8.9.1 - Unimolecular reactions
		8.9.2 - Bimolecular reactions
	8.10 - Kinetics of reactions on surfaces where the solid is either a product or reactant
	8.11 - Decline of surface activity: catalyst deactivation
	8.12 - Summary
	Problems
	References
		Further readings
Chapter 9 - Protein-ligand interactions
	Chapter outline
	9.1 - Multifunctionalization of proteins
	9.2 - Covalently bound oligomers
	9.3 - Noncovalent assembly of protein
	9.4 - Protein assembly via domain swapping
	9.5 - Coexistence of protein oligomer mixtures
	9.6 - Three simplistic models of enzyme interactions
		9.6.1 - The MWC model
		9.6.2 - The KNF model
		9.6.3 - The morpheein model
	9.7 - Protein-ligand interactions
	9.8 - Single ligand species versus enzymes with two identical sites
	9.9 - Single-ligand species on a homosteric enzyme
	9.10 - Sequential single ligand species on allosteric enzymes
	9.11 - Single-ligand species on random-access allosteric enzymes
	9.12 - Multiple different ligand-specific active centers
		9.12.1 - Simple allosteric enzyme
		9.12.2 - Dimers with parallel allosteric sites
		9.12.3 - Parallel interaction
		9.12.4 - Uniallosteric interaction
	9.13 - Competitive multiligand interactions on homosteric enzymes
		9.13.1 - Two-site homosteric enzyme
		9.13.2 - n-site homosteric enzyme
	9.14 - Summary
	Problems
	References
	Further readings
Chapter 10 - Molecular regulation
	10.1 - Single substrate reactions
		10.1.1 - Catalysis of a homosteric enzyme
		10.1.2 - Catalysis of an allosteric enzyme
	10.2 - “Unimolecular” reactions
		10.2.1 - Homosteric dimeric enzyme
		10.2.2 - Homosteric enzymes
	10.3 - Bimolecular reactions
		10.3.1 - Multisited enzymes
		10.3.2 - Enzyme substitution
	10.4 - The simplest polymorph: a bimorph of two monomeric forms of the same enzyme
		10.4.1 - An indifferent bimorph or morpheein
		10.4.2 - A ligand-stabilized bimorph
		10.4.3 - A lignd-induced bimorph
		10.4.4 - A simplistic kinetic polymorph
	10.5 - Kinetics of polymorphic catalysis
		10.5.1 - Substrate-induced polymorph
			10.5.1.1 - A bimorph of two n-oligo enzymes
		10.5.2 - Substrate-stabilized polymorph
			10.5.2.1 - Substrate-stabilized interconvertible polymorph with noninteractive sites
		10.5.3 - Substrate-indifferent polymorph
			10.5.3.1 - Substrate-indifferent interconvertible biprotomer polymorph with noninteractive sites
			10.5.3.2 - An example of polymorph
	10.6 - Multimolecular reactions on enzymes with ligand-specific active centers
		10.6.1 - Simplistic allosteric enzyme
		10.6.2 - Dimers with parallel allosteric sites
		10.6.3 - Catalysis on allosteric enzyme with n-pairs of parallel sites
	10.7 - Parallel allosteric competitive interactions
		10.7.1 - Simplistic allosteric enzyme
		10.7.2 - Dimers with parallel allosteric sites
		10.7.3 - Interactive enzymes with pairs of parallel n-homosteric sites
	10.8 - Summary
	Problems
	References
	Further readings
Chapter 11 - Cell metabolism
	Chapter outline
	11.1 - The central dogma
	11.2 - DNA replication: preserving and propagating the cellular message
	11.3 - Transcription: sending the message
	11.4 - Translation: message to product
		11.4.1 - Genetic code: universal message
		11.4.2 - Translation: how the machinery works
		11.4.3 - Posttranslational processing: making the product useful
	11.5 - Metabolic regulation
		11.5.1 - Genetic-level control: which proteins are synthesized?
		11.5.2 - Metabolic pathway control
	11.6 - How a cell senses its extracellular environment?
		11.6.1 - Mechanisms to transport small molecules across cellular membranes
		11.6.2 - Role of cell receptors in metabolism and cellular differentiation
	11.7 - Major metabolic pathways
		11.7.1 - Bioenergetics
		11.7.2 - Glucose metabolism: glycolysis and the TCA cycle
		11.7.3 - Metabolism of common plant biomass-derived monosaccharides
		11.7.4 - Fermentative pathways
		11.7.5 - Respiration
		11.7.6 - Control sites in aerobic glucose metabolism
		11.7.7 - Metabolism of nitrogenous compounds
		11.7.8 - Nitrogen fixation
		11.7.9 - Metabolism of hydrocarbons
		11.7.10 - Interrelationships of metabolic pathways
	11.8 - Overview of biosynthesis
	11.9 - Overview of anaerobic metabolism
	11.10 - Overview of autotrophic metabolism
	11.11 - Overall kinetic assymptote: the Monod equation
	11.12 - Summary
	References
	Further readings
Chapter 12 - Evolution and genetic engineering
	Chapter outline
	12.1 - Mutations
		12.1.1 - What causes genetic mutations?
			12.1.1.1 - Spontaneous mutations
			12.1.1.2 - Induced mutations
		12.1.2 - Types of mutations
			12.1.2.1 - Germ-line mutations and somatic mutations
			12.1.2.2 - Lethal, nonlethal, and neutral mutations
			12.1.2.3 - Point mutations
				12.1.2.3.1 - Transitions or transversions
				12.1.2.3.2 - Insertions
				12.1.2.3.3 - Deletions
		12.1.3 - Large-scale mutations
			12.1.3.1 - Chromosomal structural mutations
			12.1.3. 2 Changes in chromosome number
	12.2 - Selection
		12.2.1 - Natural selection
		12.2.2 - Artificial selection (selection of mutants with useful mutations)
	12.3 - Natural mechanisms for gene transfer and rearrangement
		12.3.1 - Genetic recombination
		12.3.2 - Transformation
		12.3.3 - Transduction
		12.3.4 - Episomes and conjugation
		12.3.5 - Transposons: internal gene transfer
	12.4 - Techniques of genetic engineering
		12.4.1 - Gene synthesis
		12.4.2 - Complimentary DNA or cDNA
		12.4.3 - Cloning genes into a plasmid
		12.4.4 - Polymerase chain reaction
		12.4.5 - Vectors and plasmids
			12.4.5.1 - Restriction enzymes
			12.4.5.2 - DNA ligase
			12.4.5.3 - Plasmids
			12.4.5.4 - Gene transfer
	12.5 - Applications of genetic engineering
	12.6 - The product and process decisions
	12.7 - Host-vector system selection
		12.7.1 - Escherichia coli
		12.7.2 - Gram-positive bacteria
		12.7.3 - Lower eukaryotic cells
		12.7.4 - Mammalian cells
		12.7.5 - Insect cell-baculovirus system
		12.7.6 - Transgenic animals
		12.7.7 - Transgenic plants and plant cell culture
		12.7.8 - Comparison of strategies
	12.8 - Regulatory constraints on genetic processes
	12.9 - Metabolic engineering
	12.10 - Protein engineering
	12.11 - Summary
	Problems
	References
	Further readings
Chapter 13 - How cells grow
	Chapter outline
	13.1 - Quantifying biomass
		13.1.1 - Cell number density
		13.1.2 - Cell mass concentration
			13.1.2.1 - Direct methods
			13.1.2.2 - Indirect methods
	13.2 - Batch growth patterns
	13.3 - Biomass yield
	13.4 - Approximate growth kinetics and Monod equation
	13.5 - Cell death rate
	13.6 - Cell maintenance and endogenous metabolism
	13.7 - Product yield
	13.8 - Oxygen demand for aerobic microorganisms
	13.9 - Autotrophic growth
	13.10 - Effect of environmental conditions
		13.10.1 - Effect of temperature
		13.10.2 - Effect of pH
		13.10.3 - Effect of redox potential
		13.10.4 - Effect of electrolytes and substrate concentration
	13.11 - Heat generation by microbial growth
	13.12 - Overview of cell growth kinetic models
		13.12.1 - Unstructured growth models
		13.12.2 - Simple growth rate model: Monod equation
		13.12.3 - Modified Monod equation with growth inhibitors
			13.12.3.1 - Substrate inhibition
			13.12.3.2 - Product inhibition
			13.12.3.3 - Cell inhibition
			13.12.3.4 - Inhibition by toxic compounds
		13.12.4 - Multiple limiting substrates
			13.12.4.1 - Complementary substrates
			13.12.4.2 - Substitutable substrates
			13.12.4.3 - Mixed types of substrates
		13.12.5 - Simplest reaction network model
		13.12.6 - Simplest metabolic pathway
		13.12.7 - Cybernetic models
		13.12.8 - Computational systems biology
	13.13 - Selective substrate uptake kinetics
	13.14 - Summary
	Problems
	References
	Further readings
Chapter 14 - Cell cultivation
	14.1 - Batch culture
	14.2 - Continuous culture
		14.2.1 - Chemostat devices for continuous culture
		14.2.2 - The ideal chemostat
		14.2.3 - Cell composition change in chemostat
		14.2.4 - The chemostat as a tool
	14.3 - Choosing the cultivation method
	14.4 - Chemostat with recycle
	14.5 - Multistage chemostat systems
	14.6 - Waste water treatment process
	14.7 - Immobilized cell systems
		14.7.1 - Active immobilization of cells
		14.7.2 - Passive immobilization—biological films
	14.8 - Solid substrate fermentations
	14.9 - Fed-batch operations
		14.9.1 - Theoretical considerations
			14.9.1.1 - Culture volume
			14.9.1.2 Limiting substrate in the reactor
			14.9.1.2 - Cell biomass
			14.9.1.4. Extracellular products
			14.9.1.5 - Temperature in the reactor
		14.9.2 - Ideal isothermal fed-batch reactors
		14.9.3 - Isothermal pseudosteady state fed-batch growth
	14.10 - Summary
	Problems
	Further readings
Chapter 15 - Sustainability and stability
	15.1 - Feed stability of a CSTR
		15.1.1 - Multiple steady states (MSS)
		15.1.2 - Stability of steady state
		15.1.3 - Effect of feed parameters on MSS
	15.2 - Thermal stability of a CSTR
	15.3 - Approaching steady state
	15.4 - Catalyst instability
		15.4.1 - Fouling
		15.4.2 - Poisoning
		15.4.3 - Sintering
		15.4.4 - Catalyst activity decay
		15.4.5 - Spent catalyst regeneration
	15.5 - Genetic instability
		15.5.1 - Segregational instability
		15.5.2 - Plasmid structural instability
		15.5.3 - Host cell mutations
		15.5.4 - Growth-rate-dominated instability
		15.5.5 - Considerations in plasmid design to avoid process problems
		15.5.6 - Host-vector interactions and genetic instability
	15.6 - Mixed cultures
		15.6.1 - Major classes of interactions in mixed cultures
		15.6.2 - Interactions of two species fed on the same limiting substrate
		15.6.3 - Interactions of two mutualistic species
		15.6.4 - Industrial applications of mixed cultures
		15.6.5 - Mixed culture in nature
	15.7 - Sustainability of mixed culture
		15.7.1 - Predator and prey interactions
		15.7.2 - Lokka-Volterra model – a simplified predator-prey interaction model
	15.8 - Summary
	Problems
	Further readings
Chapter 16 - Combustion, reactive hazard, and bioprocess safety
	16.1 - Biological hazards
	16.2 - Identifying chemical reactivity hazards
		16.2.1 - Chemical hazard labeling
		16.2.2 - Chemical reactivity hazard
	16.3 - Heat, flames, fires, and explosions
	16.4 - Probabilities, redundancy, and worst-case scenarios
	16.5 - Chain reactions
	16.6 - Autooxidation and safety
		16.6.1 - A simple model of autooxidation
		16.6.2 - Spoilage of food
		16.6.3 - Antioxidants
	16.7 - Combustion
		16.7.1 - Hydrogen oxidation
		16.7.2 - Chain branching reactions
		16.7.3 - Alkane oxidation
		16.7.4 - Liquid alkane oxidation
		16.7.5 - Thermal ignition
		16.7.6 - Thermal and chemical autocatalysis
	16.8 - Premixed flames
		16.8.1 - Stability of a tube flame
		16.8.2 - Premixed burner flames
		16.8.3 - Diffusion flames
		16.8.4 - Laminar and turbulent flames
	16.9 - Heat generation
		16.9.1 - Radiation
		16.9.2 - Flammability limits
	16.10 - Gasification and pyrolysis
		16.10.1 - Pyrolysis
		16.10.2 - Coke and charcoal
		16.10.3 - The campfire or charcoal grill
		16.10.4 - Solid wood or coal combustion
			16.10.5 - Gasification and Fisher-Tropsch technology
		16.11 - Solid and liquid explosives
		16.12 - Explosions and detonations
		16.13 - Reactor safety
		16.14 - Summary
		Problems
	Websites
	Further readings
Chapter 17 - Mass transfer effects: immobilized and heterogeneous reaction systems
	17.1 - How transformation occurs in a heterogeneous system?
	17.2 - Molecular diffusion and mass transfer rate
	17.3 - External mass transfer
	17.4 - Are kinetic constants of microbial growth dependent on cell size?
	17.5 - Reactions in isothermal porous catalysts
		17.5.1 - Asymptote of effectiveness factor and generalized Thiele modulus
		17.5.2 - Isothermal effectiveness factor for KA = 0
			17.5.2.1 - Effectiveness factor for a zeroth order reaction in an isothermal porous slab
			17.5.2.2 - Effectiveness factor for a zeroth order reaction in an isothermal porous sphere
		17.5.3 - Isothermal effectiveness factor for KA → ∞
			17.5.3.1 - Effectiveness factor for a first order reaction in an isothermal porous slab
			17.5.3.2 - Effectiveness factor for a first order reaction in an isothermal porous sphere
		17.5.4 - Effectiveness factor for isothermal porous catalyst
			17.5.4.1 - Isothermal effectiveness factor in a porous slab
			17.5.4.2 - Isothermal effectiveness factor in a porous sphere
	17.6 - Mass transfer effects in nonisothermal porous particles
	17.7 - Encapsulation immobilization
	17.8 - Combined external and internal mass transfer effects
	17.9 - The shrinking core model
		17.9.1 - Time required to completely dissolve a porous slab full of fast-reactive materials
		17.9.2 - Time required to completely dissolve a porous sphere full of fast-reactive materials
	17.10 - Summary
	Problems
	References
	Further readings
Chapter 18 - Bioreactor design and operation
	18.1 - Bioreactor selection
	18.2 - Reactor operational mode selection
	18.3 - Aeration, agitation, and heat transfer
	18.4 - Scale-up
	18.5 - Scale-down
	18.6 - Bioinstrumentation and controls
	18.7 - Sterilization of process fluids
		18.7.1 - Batch thermal sterilization
		18.7.2 - Continuous thermal sterilization
			18.7.2.1 - Thermal sterilization in a CSTR
			18.7.2.2 - Thermal sterilization in a PFR
			18.7.2.3 - Thermal sterilization in a laminar flow tubular reactor
			18.7.2.4 - Thermal sterilization in a turbulent flow tubular reactor
		18.7.3 - Sterilization of liquids
		18.7.4 - Sterilization of gases
		18.7.5 - Ensuring sterility
	18.8 - Aseptic operations and practical considerations for bioreactor system construction
		18.8.1 - Equipment, medium transfer and flow control
		18.8.2 - Stirrer shaft
		18.8.3 - Fermenter inoculation and sampling
		18.8.4 - Materials of construction
		18.8.5 - Sparger design
		18.8.6 - Evaporation control
	18.9 - Effect of imperfect mixing
		18.9.1 - Compartment model
		18.9.2 - Surface adhesion model
	18.10 - Summary
	Problems
	References
Chapter 19 - Real reactors and residence time distributions
	Chapter outline
	19.1 - Real reactors
	19.2 - Residence-time distribution function
		19.2.1 - RTD determination with a pulse input
		19.2.2 - RTD determination with a step input
		19.2.3 - RTD determination with any tracer inputs
		19.2.4 - Characteristics of the RTD
	19.3 - Residence-time distributions of ideal reactors
		19.3.1 - RTDs in batch reactors and PFRs
		19.3.2 - RTD in a CSTR
		19.3.3 - RTD in an ideal laminar-flow tubular reactor
		19.3.4 - A comparison of RTDs in ideal reactors
	19.4 - Tubular dispersion reactor
	19.5 - PFR with partial distributed feed/withdraw and recycle
	19.6 - Summary
	Problems
	Further readings
Chapter 20 - Design of experiment
	20.1 - Experiment
		20.1.1 - Controlled experiments
		20.1.2 - Observational study: natural or field experiments
	20.2 - Adaptive design
	20.3 - Factorial design, LI
	20.4 - Fractional factorial design
		20.4.1 - Linear response
		20.4.2 - Response surface
		20.4.3 - Non-interacting systems
	20.5 - Plackett-Burman design
	20.6 - Taguchi experimental design
	20.7 - Central composite design
	20.8 - Box-Behnken design
	20.9 - Doehlert design
	20.10 - Superlative box design
	20.11 - Quality impartial design
	20.12 - DOE for cubic and quartic response models
	20.13 - Independent variable versus normalized factor
	20.14 - Summary
	Further readings
Index




نظرات کاربران