دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Mohanan P.V., Kappalli S. (ed.) سری: ISBN (شابک) : 9789811978333 ناشر: Springer سال نشر: 2023 تعداد صفحات: 770 [771] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Biomedical Applications and Toxicity of Nanomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای زیست پزشکی و سمیت نانومواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Biomedical Applications and Toxicity of Nanomaterials Copyright Preface Contents Editors and Contributors 1. Macroporous Cryogel-Based Systems for Water Treatment Applications and Safety: Nanocomposite-Based Cryogels and Bacteria-Based Bioreactors Abbreviations 1.1 Introduction 1.2 Nanocomposite-Based Cryogels 1.2.1 Nanocomposite Cryogel Preparation 1.2.1.1 Direct method 1.2.1.2 Immobilizing Nanoparticles on the Surface of Cryogels 1.2.1.3 In Situ Preparation 1.2.2 Application of Cryogel Nanocomposites for Water Treatment 1.2.2.1 Adsorption 1.2.2.2 Catalysis 1.2.3 Assessment of the Safety of Nanocomposite Devices 1.2.3.1 Assessment of Nanoparticle Leaching from Nanocomposites 1.2.3.2 Assessment of Nanocomposite Toxicity 1.3 Bacteria-Based Bioreactors 1.3.1 Methods for Bacteria Immobilization 1.3.2 Environmental Applications of Cryogels with Immobilized Bacteria 1.3.3 Sensors for Monitoring Water Quality 1.4 Concluding Remarks References 2. One-Dimensional Semiconducting Nanomaterials: Toxicity and Clinical Applications 2.1 Introduction 2.2 Fabrication of 1D Semiconductors 2.2.1 Top-Down Fabrication 2.2.2 Vapor-Liquid-Solid (VLS) Phase Growth 2.2.3 Solution-Liquid-Solid (SLS) Method 2.2.4 Vapor-Solid-Solid (VSS) Method 2.2.5 Vapor-Solid (VS) Method 2.2.6 Electrospinning 2.2.7 Electrochemical Deposition 2.2.8 Hydrothermal Synthesis 2.2.9 Chemical Vapor Deposition (CVD) 2.2.10 Intrinsic Growth 2.2.11 Manipulating the Growth Using Capping Agents 2.2.12 Self-Assembly 2.2.13 Template-Assisted 2.2.14 Electrochemical Anodization 2.3 Biocompatibility 2.4 Biomedical Applications 2.4.1 Sensors for Medical Diagnosis 2.4.2 Bone Applications 2.4.3 Phototherapy 2.4.4 Drug Delivery 2.4.5 Other Applications 2.5 Conclusion and Outlook References 3. Prospects of Safe Use of Nanomaterials in Biomedical Applications 3.1 Introduction 3.2 Biosensors 3.3 Nanomaterials 3.3.1 Surface Functionalization of Nanoparticles 3.4 Cancer Biomarkers 3.4.1 Lanthanum Hydroxide Nanoparticles (La(OH)3) Based Electrochemical Biosensor for Detection of Cyfra-21-1 Cancer Biomarker 3.4.2 Detection of Cyfra-21-1 Cancer Biomarker Using Cubic Cerium Oxide-Reduced Graphene Oxide (CeO2-RGO) Nanocomposite-Based ... 3.4.3 RGO Modified Mediator Paper-Based Electrochemical Biosensor for IL-8 Cancer Biomarker Detection 3.5 Vitamin-D3 Biomarker 3.5.1 Insoluble and Hydrophilic Electro Spun Cellulose Acetate Fiber-Based Electrochemical Biosensor for 25-OHD3 Biomarker Det... 3.6 Carbon Dots (CDs) for Bioimaging Applications in Cancerous Cells 3.7 Conclusion References 4. Hyaluronic Acid-Based Nanotechnologies for Delivery and Treatment 4.1 Introduction: CD44 and Hyaluronic Acid Interaction 4.1.1 CD44 4.1.2 CD44 Role in Physiological Condition vs Cancer 4.1.3 CD44 expression in normal, inflamed, and cancer tissues 4.1.4 Hyaluronic Acid and Its physiological Role 4.1.4.1 Role of Hyaluronic Acid in inflammation 4.1.4.2 Role of Hyaluronic Acid in Cancer 4.1.5 Internalization of Soluble Hyaluronic Acid 4.1.6 Hyaluronic Acid and Current Treatments 4.1.6.1 Role of Hyaluronic Acid as Therapeutic 4.1.6.2 Ophthalmic and Injectable Hyaluronic Acid Treatments 4.1.6.3 Hyaluronic Acid Conjugates 4.2 Hyaluronic Acid-Based Nanotechnologies to Target CD44 4.2.1 Current Strategies to Manufacture Hyaluronic Acid-Based Nanotechnologies 4.2.2 Hyaluronic Acid-Based Nanoparticles and Design of Experiments 4.2.3 Formulation of Nanoparticles for Delivery of Nucleic Acid to Cancer Cells 4.2.3.1 Chitosan Hyaluronic Acid Nanoparticles and Impact of Formulation and Preparation Processes on Their Characteristics 4.2.3.2 Design Criteria for the Formulation of Nanoparticles to Deliver Nucleic Acids to Target CD44+ Cells 4.2.4 Considerations on the Single-Step Fabrication of Hyaluronic Acid Nanoparticles 4.3 Manufacturing of Chitosan/Hyaluronic Acid Nanoparticles for the Delivery of Nucleic Acids 4.3.1 Current Challenges to Deliver siRNA 4.3.2 Models to Validate Delivery Via CD44: Internalization Mechanisms of Hyaluronic Acid Modified Chitosan Nanoparticles 4.4 Conclusion References 5. Theranostics Nanomaterials for Safe Cancer Treatment 5.1 Introduction: Cancer and Nanomedicine 5.2 Bio-Inspired Organic Nanoparticles Used in Cancer 5.2.1 Liposomes 5.2.2 Lipid-Based Theranostic Nanoparticles (LNPs) 5.2.3 Solid-Form Lipid Nanoparticles (SLNs) 5.2.4 Lipid-Nano Structure (NLCs) 5.2.5 Lipid-Based Nanocapsules (LNCs) 5.2.6 Lipid Micelles 5.2.7 Protein-Based Theranostic Nanoparticles 5.2.8 Viral Nanoparticles (VNPs) 5.2.9 Oligonucleotide Theranostic Nanoparticles 5.2.10 Peptide Theranostic Nanoparticles 5.3 Inorganic Theranostic Nanoparticles 5.3.1 Gold Theranostic Nanoparticles (AuNPs) 5.3.2 Silver Nanoparticles as Theranostic Agents (AgNPs) 5.3.3 Iron Oxide Nanoparticles 5.4 Conclusion References 6. Cardiovascular Safety Assessment of New Chemical Entities: Current Perspective and Emerging Technologies 6.1 Introduction and Importance of Cardiovascular Safety Studies 6.2 ICH S7A: Safety Pharmacology Studies for Human Pharmaceuticals 6.2.1 Safety Pharmacology Core Battery 6.2.2 Follow-up Safety Pharmacology Studies 6.2.3 Supplemental Safety Pharmacology Studies 6.3 ICH S7B Guidelines: The Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolon... 6.3.1 hERG Channels and QT Syndrome 6.4 Conventional Techniques for CVS Safety Assessments 6.4.1 In Vivo Telemetry Technique 6.4.2 In Vitro hERG Assay and Isolated Systems 6.5 Emerging Technologies Techniques for CVS Safety Assessments 6.5.1 In Vivo Techniques 6.5.2 In Vitro Techniques 6.6 Newer Concepts in CVS Safety Assessment 6.6.1 Front-Loading 6.6.2 Integrated Core Battery Safety Studies 6.6.3 Introduction of Alternate Models 6.6.4 Exploration of Targets 6.7 Journey to an Evolved CVS Safety Assessment Approach 6.7.1 Application of Cardiac Stem Cells in CVS Safety Studies 6.7.2 Cardiac Slice Preparation (In Vitro) 6.7.3 Advanced and Superior Blood Pressure Recording with High Definition Oscillometry 6.7.4 Cardiac Contractility a Core CVS Study Parameter 6.7.5 Organ on Chips 6.8 ICH E14 Guideline: The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhyth... 6.9 The Downside of the Current Approach on CVS Safety Assessment 6.10 Development of a New Prototype for the Assessment of NCE Cardiovascular Liability 6.11 Comprehensive In Vitro Proarrhythmia Assay (CiPA) 6.12 In Silico Methods of CVS Safety Assessment: The Smart and Mathematical Future 6.13 Conclusion References 7. Toxicology of Pharmaceutical Products During Drug Development 7.1 Introduction 7.2 Basic Principles of Toxicity Studies 7.3 Role of Preclinical Toxicity Animal Models in Drug Development 7.4 In-vivo Models 7.5 Different Animal Models in Toxicological Studies 7.6 In-vitro Models 7.7 Types of (Systemic) Toxicity Studies: Acute, Subchronic, and Chronic Toxicology 7.8 Fourteen to Twenty-Eight Day Repeated-Dose Toxicity Studies 7.9 Ninety-Day Repeated-Dose Toxicity Studies 7.10 180-Day Repeated-Dose Toxicity Studies 7.11 Female Reproduction and Developmental Toxicity Studies 7.11.1 Segment I-Female Fertility Study 7.11.2 Segment II-Teratogenicity Study 7.11.3 Segment III: Perinatal Study 7.12 Special Toxicities Studies 7.12.1 Local Toxicity 7.12.2 Dermal Toxicity Study 7.12.3 Photo-Allergy or Dermal Phototoxicity 7.12.4 Vaginal Toxicity Test 7.12.5 Rectal Tolerance Test 7.12.6 Ocular Toxicity Studies 7.12.7 Inhalation Toxicity Studies 7.12.8 Allergenicity/Hypersensitivity 7.12.9 Genotoxicity Studies 7.12.10 Carcinogenicity Studies References 8. Safety and Risk Assessment of Food Items 8.1 Introduction 8.1.1 Chemical Risk Assessment 8.1.1.1 Exposure to Toxic Substances Ingested Through Food 8.1.1.2 Identifying and Characterizing Hazards 8.1.2 Microbiological Risk Assessment 8.1.2.1 Risk Characterization 8.1.3 Application of Risk Assessment in the Context of Target Exposures 8.1.4 Case Studies on Targeted Exposure Assessments 8.1.5 Risk Communication and Risk Perception 8.2 Conclusion References 9. Nontoxic Natural Products as Regulators of Tumor Suppressor Gene Function 9.1 Introduction 9.2 Cancer Critical Genes 9.2.1 Tumor Suppressor Genes 9.2.2 Cell Cycle Check Points 9.2.3 Cell Cycle Control System 9.2.4 Role of CKIs in the Regulation of Cell Cycle Control 9.2.5 Role of RB in Cell Cycle Control 9.2.6 Role of P53 Protein in Cell Cycle Regulation 9.2.7 Role of APC as a Tumor Suppressor Gene 9.2.8 BRCA1 and BRCA2 9.2.9 PTEN 9.2.10 WT1 9.2.11 VHL 9.2.12 NF1 9.3 Natural Products and its Role in Regulating Tumor Suppressor Genes Function 9.3.1 Honokiol 9.3.2 Triptolide 9.3.3 Lichochalcone A 9.3.4 Acanthopanax gracilistilus 9.3.5 Ginsenosides 9.3.6 Curcumin 9.3.7 Genistein 9.3.8 Sesquiterpenoids 9.3.9 Piperine 9.3.10 Quercetin 9.3.11 Artemisinin 9.3.12 Plumbagin 9.3.13 Thymoquinone 9.4 Conclusion References 10. Advancements in the Safety of Plant Medicine: Back to Nature 10.1 Introduction 10.2 Relevance of Medicinal Plants/Plant-Derived Products and Challenges 10.3 Quality Control and Modernization of Herbal Product Development 10.4 Chemotaxonomic Approach for Sustainable Use of Natural Resources 10.5 Case Studies on Chemotaxonomic Approach 10.6 Acorus calamus L. 10.7 Gloriosa superba L. 10.8 Tribulus terrestris L. 10.9 Coleus forskohlii Briq 10.10 Costus speciosus (Koen. Ex Retz) Sm 10.11 Ageratum conyzoides L. 10.12 Centella asiatica L. (Urban) 10.13 Integration of Herbal Products in the Mainstream: Policy Regulations 10.14 Emerging Concept of Plant-Based Nano-Formulations: A New Face of Traditional Ayurvedic Bhasmas 10.15 Conclusion References 11. Chemicals and Their Interaction in the Aquaculture System 11.1 Introduction 11.2 Chemical Practices in Aquaculture Systems 11.3 Aquaculture Species of Commercial Importance: Worldwide Review 11.4 Chemical Ingredients Purposed for Water Quality Management in Aquaculture 11.4.1 Liming 11.4.2 EDTA treatment 11.4.3 Potassium Permanganate treatment 11.5 Fertilizers 11.6 Disinfectants 11.6.1 Chlorination 11.6.2 Formalin Treatment 11.6.3 BKC Treatment 11.6.4 Iodine Treatment 11.6.5 Hydrogen Peroxide 11.6.6 Malachite Green 11.7 Anesthetics 11.8 Chemical Structure of Benzocaine 11.9 Antimicrobials 11.9.1 Chloramphenicol 11.9.2 Acriflavine 11.9.3 Copper Compound 11.9.4 Dipterex 11.10 Feed Additives 11.11 Pesticides 11.11.1 Herbicides 11.11.2 Insecticides 11.12 Immunostimulants 11.13 Breeding Inducing Agents 11.14 Conclusion References 12. Zebrafish as a Biomedical Model to Define Developmental Origins of Chemical Toxicity 12.1 Introduction 12.2 Mechanisms of the DOHaD Paradigm 12.3 Overview of DOHaD Studies in Environmental Health 12.4 Strengths of the Zebrafish to Address the DOHaD of Environmental Chemicals 12.5 DOHaD Toxicity Studies Using Zebrafish 12.6 Study Design Considerations 12.7 Future Directions and Challenges References 13. Green Synthesis of Nontoxic Nanoparticles 13.1 Introduction 13.2 Synthesis of Nanoparticles Using a Green Approach 13.3 Nanoparticle Synthesis Mediated by Bacteria 13.4 Nanoparticle Synthesis Mediated by Fungus and Yeast 13.5 Nanoparticle Synthesis Mediated by Algae 13.6 Nanoparticle Synthesis Mediated by Viruses 13.7 Nanoparticle Synthesis Mediated by Plants 13.8 Factors Affecting the Biosynthesis of Nanoparticles 13.9 Characterization of the Synthesized Nanoparticle 13.10 Safety Aspects of Green Synthesized Nanoparticles 13.11 Application of Nanoparticles Developed by Green Synthesis 13.12 Conclusion and Future Perspectives References 14. Synthesis, Characterization and Applications of Titanium Dioxide Nanoparticles 14.1 Introduction 14.2 Methods for Synthesis of TiO2 Nanoparticles 14.2.1 Physical Methods 14.2.1.1 Spray Pyrolysis Synthesis and Electrophoretic Concentration of TiO2 NPs 14.2.1.2 Microwave-Assisted Method for Synthesis 14.2.1.3 Laser Ablation 14.2.1.4 Electrochemical Method 14.2.2 Chemical Methods 14.2.2.1 Sol-Gel Route of Synthesis 14.2.2.2 Coprecipitation Method 14.2.2.3 Solvothermal Method 14.2.2.4 Hydrothermal Method 14.2.2.5 Laser Vaporization and Condensation 14.2.3 Biological Methods 14.3 Characterization 14.4 Applications 14.5 Industrial Application 14.5.1 Lithium Batteries 14.5.2 Gas Sensors 14.5.3 Paper Industry 14.5.4 Food Industry 14.6 Environmental 14.6.1 Photocatalyst 14.6.2 Photocatalytic Elimination of Water Pollutants 14.6.3 Removal of Pollution/Deodorization Applications 14.7 Biomedical Application 14.7.1 Photodynamic Therapy (PDT) 14.7.2 Targeted Drug Delivery 14.7.3 Antibacterial Activity 14.7.4 Bone and Dental Implants 14.8 Conclusion References 15. Characterization of Nontoxic Nanomaterials for Biological Applications Abbreviations 15.1 Introduction 15.2 Physical and Morphological Characterization 15.2.1 Scanning Electron Microscopy (SEM) 15.2.2 Transmission Electron Microscope (TEM) 15.2.3 Brunauer-Emmett-Teller (BET) Surface Area Analysis 15.2.4 Atomic Force Microscopy (AFM) 15.3 Chemical and Biological Characterization 15.3.1 X-Ray Diffraction (XRD) 15.3.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 15.3.3 X-Ray Photoelectron Spectroscopy (XPS) 15.3.4 Dynamic Light Scattering (DLS) 15.3.5 X-Ray Absorption Spectroscopy (XAS) 15.4 Spectral Characterization 15.4.1 UV-VIS Spectroscopy 15.4.2 Fourier Transform Infrared Spectroscopy (FTIR) 15.4.3 Nuclear Magnetic Resonance Spectroscopy (NMR) 15.4.4 Electron Spin Resonance Spectroscopy (ESR) 15.4.5 Mossbauer Spectroscopy 15.5 Thermal Characterization 15.5.1 Thermogravimetric Analysis (TGA) 15.5.2 Differential Scanning Calorimetry (DSC) 15.5.3 Differential Thermal Analysis (DTA) 15.6 Optical Characterization Techniques 15.6.1 Photoluminescence Spectroscopy 15.6.2 UV-Visible Spectroscopy 15.6.3 Infrared (IR) Spectroscopy 15.6.4 Raman Spectroscopy 15.7 Magnetic, Rheological, and Electrical Characterization 15.7.1 Magnetic Characterization 15.7.2 Rheological Characterization 15.7.3 Electrical Characterization 15.8 Conclusion References 16. Toxicity Assessment of Nanoparticle 16.1 Introduction 16.2 Potential Mechanism of Nanoparticle-Induced Toxicity 16.3 Toxicity Assessments 16.3.1 In Vitro Toxicity Assessment 16.3.1.1 MTT Assay 16.3.1.2 Modified Tetrazolium Salts 16.3.1.3 Neutral Red Uptake Assay 16.3.1.4 Lactate Dehydrogenase Assay 16.3.1.5 Sulforhodamine B Assay 16.3.1.6 Resazurin Reduction Assay 16.3.1.7 Assay of Intracellular ATP 16.3.1.8 Calcein-AM/PI Dual Staining 16.3.2 In Vivo Toxicity Assessments 16.3.2.1 Embryonic Zebrafish Assay 16.3.2.2 Reproductive Toxicity Assessment Using Drosophila melanogaster 16.3.2.3 Toxicity Assessment Using Daphina magna 16.3.2.4 Chick Chorioallantoic Membrane (CAM) Assay 16.3.2.5 Acute and Chronic Toxicity Studies 16.3.2.6 Micronucleus Assay 16.3.2.7 Chromosomal Aberrations Assay 16.3.2.8 DNA Damage Assay 16.3.2.9 Immunotoxicity Assays 16.3.2.10 Buehler Test (BT) 16.3.2.11 The Guinea Pig Maximization Test (GPMT) 16.3.2.12 Local Lymph Node Assay (LLNA) 16.4 Challenges and Future Perspective in Toxicity Assessment of Nanoparticles References 17. Safety of Nanoparticles: Emphasis on Antimicrobial Properties 17.1 Introduction 17.2 Nanoparticles: An Overview 17.2.1 Nanoparticles as Drug Carriers 17.2.1.1 Chitosan 17.2.1.2 Alginate 17.2.1.3 Liposomes 17.2.1.4 Solid Lipid Nanoparticles 17.2.1.5 Polymeric Nanoparticles 17.2.1.6 Dendrimers 17.2.1.7 Quantum Dots 17.2.1.8 Metallic Nanoparticles 17.2.1.9 Carbon-Based Nanoparticles 17.2.2 Advantages of Drug Administration Employing Nanoscience 17.2.3 Disadvantages of Drug Administration Employing Nanoscience 17.3 Applications of Nanoparticles 17.3.1 Nanoparticles as Antibacterial Agents 17.3.2 Nanoparticles as Antifungal Agents 17.3.3 Nanoparticles as Antiviral Agents 17.3.4 Nanoparticles as Anti-leishmanial Agents 17.4 Conclusion and Future Perspectives References 18. Quantum Dots for Imaging and Its Safety 18.1 Introduction 18.2 Features of QDs 18.2.1 Tunable Light Emission 18.2.2 Broad Absorption Spectra and Narrow Emission Spectra 18.2.3 High Quantum Yield and High Absorption Extinction Coefficient 18.2.4 Excellent Photostability 18.3 Synthesis of Quantum Dots 18.4 Classification/Types of Quantum Dots 18.5 Imaging Applications of Quantum Dots 18.5.1 In Vitro Imaging 18.5.1.1 Cellular and Biomolecular Imaging 18.5.1.2 Tissue Staining 18.5.1.3 Binding Assays 18.5.2 In Vivo Imaging 18.5.2.1 Tumor Imaging 18.5.2.2 Deep Tissue Imaging 18.6 Safety Concerns of QDs 18.7 Conclusion References 19. Genotoxicity Evaluation of Nanosized Materials 19.1 Introduction 19.2 Genotoxicity Evaluation of Nanomaterials 19.3 Mutagenicity Assay 19.3.1 In Vitro Mutagenicity 19.3.1.1 The Ames Test 19.3.2 In Vitro Mammalian Cell Gene Mutation Test 19.3.2.1 Hypoxanthine-Guanine Phosphoribosyl Transferase Test 19.3.2.2 Xanthine-Guanine Phosphoribosyl Transferase Test 19.3.2.3 The In Vitro Mouse Lymphoma Assay (Mutation at Tk Gene) 19.3.3 In Vivo Mammalian Mutagenicity Assay 19.3.3.1 LacI and LacZ Transgenic Mouse Model (Somatic Cells) 19.3.3.2 Transgenic Rodent Assays (Germ Cell) 19.3.3.3 Pig-a Assay in Rodents and Humans 19.4 Chromosomal Damage Assays 19.4.1 Single Cell Gel Electrophoresis (SCGE) Assay/Comet Assay 19.4.2 General Requirements 19.4.3 In Vitro Comet Assay 19.4.3.1 Alkaline Single Cell Gel Electrophoresis/Alkaline Comet Assay 19.4.3.2 Preparation of Sample 19.4.3.3 Preparation of Slides for Electrophoresis and Visualization of Comets 19.4.4 In Vivo Comet Assay 19.4.4.1 Selection of Animals and Experimental Design 19.4.4.2 Dose Selection, Administration, and Sampling 19.4.4.3 Preparation of Sample and Work Procedure 19.4.4.4 Analysis and Interpretation 19.5 Micronucleus Assay 19.5.1 In Vitro Mammalian Cell Micronucleus (MN) Assay 19.5.1.1 General Principle 19.5.1.2 Experimental Design 19.5.1.3 Experimental Procedure 19.5.1.4 Analysis and Interpretation of In Vitro Micronucleus Assay 19.5.2 In Vivo MN Assay 19.5.2.1 Experimental Design and General Requirements 19.5.2.2 Analysis and Interpretation of In Vivo Micronucleus Assay 19.6 Chromosomal Aberration Assay 19.6.1 In Vitro Chromosomal Aberration Test 19.6.1.1 Selection and Preparation of Sample 19.6.1.2 Chromosome Harvest and Analysis 19.6.2 In Vivo Chromosomal Aberration Test 19.6.2.1 Experimental Design and Sample Preparation 19.6.2.2 Chromosome Harvest Analysis and Interpretation 19.7 DNA Damage 19.7.1 Double-Strand Breaks (DSB) Assay 19.8 High-ThroughPut Methods and Recent In Vitro Models 19.8.1 Modified Versions of the Comet Assay 19.8.1.1 Medium Throughput Methylation-Sensitive Comet Assay 19.8.1.2 Endo III and FPG-Modified Comet Assay 19.8.1.3 Comet-FISH 19.8.1.4 High-Throughput Screening Using Comet Chip 19.8.1.5 ToxTracker Assay 19.8.2 Modified Techniques for MN Detection 19.8.2.1 Flow Cytometry Method 19.8.2.2 In Vitro Micronucleus Assay and FISH Analysis 19.9 Advantages and Limitations of Genotoxicity Assays 19.10 General Mechanisms of Genotoxicity 19.10.1 Primary Genotoxicity 19.10.2 Secondary Genotoxicity 19.11 Conclusion References 20. Scaffold Materials and Toxicity 20.1 Introduction 20.2 Various Scaffold Materials and Their Possible Toxicity 20.2.1 Synthetic Scaffolds Materials 20.2.2 Natural Products Scaffold Materials 20.3 Advances in Scaffold Engineering: Nanoscaffolds and Related Toxicity 20.4 Toxicity Evaluation Tests of Scaffolds 20.5 Conclusion References 21. Biological Safety and Cellular Interactions of Nanoparticles 21.1 Introduction 21.2 The Dynamics of Nanoparticle-Cell Interaction 21.2.1 Cellular Internalization of Nanoparticles 21.2.2 Interaction of Nanoparticles with Tumor Tissue 21.3 Cellular Pathways for Nanoparticle Uptake 21.3.1 Phagocytosis 21.3.2 Macropinocytosis 21.3.3 Clathrin-Mediated Endocytosis 21.3.4 Caveolae-Mediated Endocytosis 21.3.5 Clathrin- and Caveolin-Independent Endocytosis 21.4 Physicochemical Properties of Nanoparticles Influencing the Interaction Mechanisms 21.4.1 Size 21.4.2 Shape 21.4.3 Charge and Surface Hydrophobicity 21.5 The Cell Mechanics Influencing Nanoparticle-Cell Interaction 21.5.1 Cellular Adhesion 21.5.2 Cytoskeleton Interactions 21.6 Cell-Nanoparticle Interactions and Hemostasis 21.6.1 The Formation of Protein Corona 21.6.2 Nanoparticles and the Interaction with Blood Cells 21.7 Intracellular Trafficking of NPs 21.7.1 Endosomal Escape 21.7.2 Organelle and Subcellular Targeting 21.7.3 Exocytosis 21.8 Cell-Nanoparticle Interactions and Cytotoxicity 21.9 Exploring the Cellular Interaction of Nanoparticles 21.10 Conclusion References 22. Role of Artificial Intelligence in the Toxicity Prediction of Drugs 22.1 Introduction 22.1.1 Toxicity Due to Chemicals and Drugs 22.1.2 Artificial Intelligence 22.1.3 Machine Learning Models 22.1.4 Algorithms 22.1.5 Performance Evaluation Measures 22.1.6 Machine Learning Model Development 22.2 Tools Used in Artificial Intelligence 22.2.1 Neural Networks 22.2.2 Deep Learning Frameworks and Libraries 22.2.2.1 Cafe 22.2.2.2 Theano 22.2.2.3 TensorFlow 22.2.2.4 Torch 22.2.2.5 PyTorch 22.2.2.6 Scikit-Learn 22.2.3 Quantitative Structure-Activity Relationship (QSAR) 22.2.3.1 Descriptors Based on a Different Dimension 22.2.3.2 Model-Based QSAR Approach 22.2.3.3 3D QSAR 22.2.3.3.1 Comparative Molecular Field Analysis (CoMFA) 22.2.3.3.2 Comparative Molecular Similarity Indices Analysis (CoMSIA) 22.2.3.4 Machine Learning in QSAR 22.2.3.5 Application of QSAR 22.2.4 Docking 22.2.4.1 Steps in Molecular Docking 22.2.4.2 Different Types of Molecular Docking 22.2.4.3 Machine Learning in Docking 22.2.4.4 Application of Molecular Docking 22.3 OECD Guidelines for Testing Chemicals 22.4 Importance of Artificial Intelligence in Toxicity Predictions 22.4.1 Toxicity Due to Drugs 22.4.2 Toxicity Due to Drug-Drug Interactions 22.4.3 Toxicity Due to Drug-Transporter Interaction 22.5 Prediction of Toxicity in Different Organs by AI 22.5.1 Liver 22.5.2 Heart 22.5.3 Eye and Skin 22.5.4 Gastrointestinal 22.5.5 Kidney 22.6 Conclusion References 23. Chemicals and Rodent Models for the Safety Study of Alzheimer´s Disease 23.1 The Mouse as an Animal Model System 23.2 Mouse as an Animal Model System for Alzheimer´s Disease (AD) Research 23.2.1 The Amyloid Hypothesis 23.2.2 The Tau Hypothesis 23.2.3 Cholinergic Hypothesis 23.3 Commonly Used Mouse Model Systems to Study AD 23.3.1 Transgenic Mouse Models of AD 23.3.2 Chemical-Induced Models for Studying AD 23.3.2.1 Streptozotocin and AD Development 23.3.2.2 Scopolamine and AD Development 23.3.2.3 Colchicine and AD Model 23.3.2.4 Okadaic Acid and AD Development 23.3.2.5 Sodium Azide-Induced AD Model 23.3.2.6 Heavy Metal-Induced AD-Like Model 23.3.2.7 Alcohol-Induced AD-Like Model 23.3.2.8 Ibotenic Acid-Induced AD Model System 23.3.2.9 LPS-Induced AD Model System References 24. Mitochondria-Targeted Liposomal Delivery in Parkinson´s Disease Abbreviations 24.1 Introduction 24.2 Mitochondrial Dysfunction and Parkinson´s Disease 24.3 Liposomal Drug Delivery Across the BBB 24.4 Mitochondria-Targeted Liposomal Formulations 24.5 Advantages and Challenges of Liposomal Delivery 24.5.1 Advantages of Liposomes 24.5.2 Challenges of Liposomes 24.6 Regulatory Challenges for Liposomes 24.7 Conclusion References 25. Routes of Nano-drug Administration and Nano-based Drug Delivery System and Toxicity 25.1 Introduction: Importance of Nanoparticle-Based Drug Delivery 25.2 Routes of Nano-drug Delivery 25.2.1 Oral Route of Drug Delivery 25.2.1.1 Stomach Targeting Drug Delivery 25.2.1.2 Small Intestine Targeting Drug Delivery 25.2.1.3 Colon-Targeted Drug Delivery 25.2.2 Nanocarriers in Oral Route 25.2.2.1 Dendrimers 25.2.2.2 Liposomes 25.2.2.3 Others 25.2.3 The Transdermal Route of Drug Delivery 25.2.3.1 Anatomy of the Skin 25.2.3.2 Drug Transportation Across the Skin 25.2.4 Nanocarriers in Transdermal Route 25.2.5 Methods of Transdermal Drug Delivery 25.2.5.1 The Passive Method of Transdermal Delivery 25.2.5.1.1 Chemical Enhancers 25.2.5.1.2 Prodrugs 25.2.5.1.3 Carriers and Vehicles Hydrogels Liposomes Vaccines Others 25.2.5.2 The Active Method of Transdermal Delivery 25.2.5.2.1 Electroporation 25.2.5.2.2 Iontophoresis 25.2.5.2.3 Sonophoresis 25.2.5.2.4 Microneedles 25.2.5.2.5 Others 25.2.6 Ocular Route of Drug Delivery 25.2.6.1 Anatomy of the Eye 25.2.7 Nanocarriers in Ocular Route 25.2.7.1 Niosomes 25.2.7.2 Solid Lipid Nanoparticles 25.2.7.3 Inorganic Nanoparticles 25.2.7.4 Others 25.2.8 Nasal Route of Drug Delivery 25.2.8.1 Nose to Brain Targeting 25.2.8.2 Mechanism of Transport to Brain 25.2.9 Nanocarriers in Nasal Route 25.2.10 Pulmonary Route of Drug Delivery 25.2.10.1 Anatomy of Lungs 25.2.10.2 Mechanism of Drug Deposition in Lungs 25.2.11 Nanocarriers in Pulmonary Route 25.2.11.1 Solid Lipid Nanoparticles 25.2.11.2 Polymeric Nanoparticles 25.2.11.3 Others 25.2.12 Parenteral Route of Drug Delivery 25.2.13 Nanocarriers in Parenteral Route 25.2.14 Nanocarriers in Subcutaneous Route 25.2.15 Nanocarriers in Intramuscular Route 25.2.16 Nanocarriers in Intravenous Route 25.3 Future Perspectives References 26. Green Synthesized Silver Nanoparticles Phytotoxicity and Applications in Agriculture: An Overview 26.1 Introduction 26.2 Capping Agents in Nanotechnology 26.3 Silver Nanoparticles 26.4 Importance of Biosynthesis of AgNPs 26.5 Role of Plants in Green Synthesis of Nanoparticles 26.6 Phytotoxicity Effect 26.7 Applications of Silver Nanoparticles in Agriculture 26.8 Plant Disease Management and Protection 26.9 Nanofertilizers 26.10 Pest Management 26.11 Conclusion References 27. Status of Safety Concerns of Microplastic Detection Strategies 27.1 Introduction 27.2 Microplastics 27.2.1 Types 27.2.1.1 Sources 27.2.1.1.1 Dust 27.2.1.1.2 Plastic Pellets 27.2.1.1.3 Synthetic Textiles 27.2.1.1.4 Tires and Road Markings 27.2.2 Physiochemical Properties 27.2.2.1 Particle Size 27.2.2.1.1 Surface Chemistry 27.2.2.1.2 Particle Shape 27.2.2.1.3 Surface Area 27.2.2.1.4 Polymer Crystallinity 27.2.2.1.5 Polymer Additives 27.2.2.1.6 Polymer Types 27.3 Separation Methods for Microplastics 27.3.1 Density-Based Approaches 27.3.2 Hydrophobicity-Based Approaches 27.3.3 Size-Based Approaches 27.3.4 Approaches for Nanoparticle Separation 27.4 Methods for Microplastics Detection 27.4.1 Spectroscopy-Based Detection Methods 27.4.1.1 Raman Spectroscopy 27.4.1.2 Infrared (IR) Spectroscopy 27.4.1.3 Fourier Transform Infrared Spectroscopy (FTIR) 27.4.2 Microscopy-Based Detection Methods 27.4.2.1 Scanning Electron Microscopy (SEM) 27.4.3 Mass Spectrometry (MS)-Based Detection Methods 27.4.3.1 Pyrolysis-Gas Chromatography-Mass Chromatography (Py-GC-MS) 27.4.3.2 Thermal Desorption Coupled with Gas Chromatography: Mass Spectrometry (TDS-GC-MS/TED-GC-MS) 27.4.4 Chromatography-Based Detection Methods 27.4.4.1 Size-Exclusion Chromatography (SEC) 27.4.5 Composition-Based Analysis 27.4.5.1 Density Separation with Subsequent C:H:N Analysis 27.4.6 Novel Detection-Based Methods 27.4.6.1 Atomic Force Microscopy (AFM) Coupled to IR or Raman Spectroscopy 27.4.6.2 Dyes 27.5 Factors Affecting MP Detection 27.5.1 Sampling 27.5.2 Size and morphology 27.6 Conclusion References 28. Impact of Insecticides on Man and Environment 28.1 Introduction 28.2 History of Insecticide 28.3 Classification of Insecticide 28.3.1 Classification Based on Chemical Composition 28.3.1.1 Inorganic Pesticide 28.3.1.2 Synthetic Insecticides 28.3.1.2.1 Organochlorides 28.3.1.2.2 Organophosphates 28.3.1.2.3 Carbamates 28.3.1.2.4 Pyrethrins 28.3.1.2.5 Neonicotinoids 28.3.1.2.6 Biopesticides 28.3.2 Mode of Entry 28.3.2.1 Systemic Pesticides 28.3.2.2 Contact Pesticides 28.3.2.3 Fumigants 28.3.3 Mode of Action 28.4 Environmental Impact of Insecticides 28.5 Impact of Insecticides on Human Health 28.6 Alternative to Synthetic Insecticides 28.7 Conclusion References