دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Nicholas Stergiou
سری:
ISBN (شابک) : 0128133724, 9780128133729
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 407
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Biomechanics and Gait Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیومکانیک و تجزیه و تحلیل راه رفتن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بیومکانیک و تجزیه و تحلیل راه رفتن کتاب جامعی در مورد بیومکانیک ارائه می دهد که بر تجزیه و تحلیل راه رفتن تمرکز دارد. این در درجه اول برای دانشجویان مهندسی بیومدیکال، متخصصان و بیومکانیست ها با تأکید زیادی بر دستگاه های پزشکی و فناوری کمکی نوشته شده است، اما برای پزشکان و فیزیولوژیست ها نیز مورد توجه است. این به خوانندگان تازه کار اجازه می دهد تا اصول اولیه تجزیه و تحلیل راه رفتن را کسب کنند، در حالی که به خوانندگان متخصص کمک می کند تا دانش خود را به روز کنند. این کتاب بهروزترین روشهای اکتساب و محاسباتی و پیشرفتهای این حوزه را پوشش میدهد. موضوعات کلیدی شامل مکانیک و مدل سازی عضلات، کنترل و هماهنگی حرکتی، و اندازه گیری ها و ارزیابی ها است.
این منبعی برای درک مفاهیم اساسی و نحوه جمعآوری، تجزیه و تحلیل و تفسیر دادهها برای تحقیقات، صنعت، بالینی و ورزش است.
Biomechanics and Gait Analysis presents a comprehensive book on biomechanics that focuses on gait analysis. It is written primarily for biomedical engineering students, professionals and biomechanists with a strong emphasis on medical devices and assistive technology, but is also of interest to clinicians and physiologists. It allows novice readers to acquire the basics of gait analysis, while also helping expert readers update their knowledge. The book covers the most up-to-date acquisition and computational methods and advances in the field. Key topics include muscle mechanics and modeling, motor control and coordination, and measurements and assessments.
This is the go to resource for an understanding of fundamental concepts and how to collect, analyze and interpret data for research, industry, clinical and sport.
Cover Biomechanics and Gait Analysis Copyright Dedication Contents List of Figures List of Contributors Preface 1 Introduction to biomechanics 1.1 Introduction 1.2 The history of biomechanics 1.2.1 A trip down the memory lane 1.2.2 Archimedes: an early biomechanist 1.3 Areas of biomechanical inquiry: examples of diverse and unique questions in biomechanics 1.3.1 Developmental biomechanics 1.3.2 Exercise biomechanics 1.3.3 Rehabilitative biomechanics 1.3.4 Occupational biomechanics 1.3.5 Forensic biomechanics 1.4 A quick look into the future of biomechanics References Suggested readings 2 Basic biomechanics 2.1 Introduction 2.2 Analysis of movement 2.3 Basic terminology for analyzing movement 2.3.1 Basic bio terms/concepts 2.3.2 Basic mechanics terms/concepts 2.4 Basic bio considerations 2.4.1 Basic biomechanics of bones 2.4.2 Basic biomechanics of joints 2.4.3 Basic biomechanics of muscles 2.5 Basic mechanics considerations 2.5.1 Linear kinematics 2.5.1.1 Special case of linear kinematics: projectiles 2.5.2 Angular kinematics 2.5.3 Linear kinetics 2.5.4 Angular kinetics 2.6 Summary and concluding remarks References Further readings 3 Advanced biomechanics 3.1 Injuries and biomechanics 3.1.1 Running injuries 3.2 Biomechanical statistics 3.2.1 The single-subject approach for biomechanics and gait analysis 3.2.2 Bringing together running injuries and the single-subject approach 3.3 Final considerations 3.3.1 Take home messages References 4 Why and how we move: the Stickman story 4.1 Briefly introducing Stickman 4.2 The Stickman’s evolution of movement 4.3 The Stickman’s performance of movement 4.4 The Stickman learns how to move 4.5 The Stickman’s mechanics 4.6 The Stickman’s goodbye References 5 Power spectrum and filtering 5.1 Introduction 5.2 A simple composite wave 5.3 Spectral analysis 5.4 Fourier series 5.5 Discrete Fourier analysis 5.5.1 Data sampling 5.5.2 The discrete Fourier transform 5.5.3 Spectral leakage 5.6 Stationarity and the discrete Fourier transform 5.7 Short-time discrete Fourier transform 5.8 Noise 5.9 Data filtering 5.10 Practical implementation 5.11 Conclusion References 6 Revisiting a classic: Muscles, Reflexes, and Locomotion by McMahon 6.1 Introduction 6.2 Fundamental muscle mechanics 6.2.1 Early ideas about muscle mechanics 6.2.2 Isolated muscles 6.2.3 Force–velocity curves 6.2.4 Active and passive components 6.2.5 Stress–strain relationship 6.2.6 Summary 6.3 Muscle heat and fuel 6.3.1 Heat production 6.3.2 Activation heat 6.3.3 Shortening and lengthening heat 6.3.4 Thermoelastic effects 6.3.5 Lactic acid 6.3.6 Phosphates 6.3.7 Effects of exercise 6.3.8 Summary 6.4 Contractile proteins 6.4.1 Organization of muscles 6.4.2 Actin, myosin, and troponin 6.4.3 Sliding filament model 6.4.4 Tension–length curves 6.4.5 Sarcoplasmic reticulum 6.4.6 Tropomyosin and troponin 6.4.7 Titin 6.4.8 Summary 6.5 Sliding movement: Huxley’s model revisited 6.5.1 Other theoretical models 6.5.2 Evidence supporting independent force generators 6.5.3 Formulation of the model 6.5.4 Attachment and detachment 6.5.5 Crossbridge distribution for isotonic shortening 6.5.6 Setting the constants 6.5.7 Isotonic stretching 6.5.8 Hill’s revisions in heat production 6.5.9 Reversible detachment 6.5.10 Problems and further updates of the model 6.5.11 Summary 6.6 Force development in the crossbridge 6.6.1 Early transients 6.6.2 Rapid elasticity and the series elastic component 6.6.3 Summary 6.7 Reflexes and motor control 6.7.1 Organization of the motor control system 6.7.1.1 Spinal cord 6.7.1.2 Brain stem 6.7.1.3 Sensorimotor cortex and basal ganglia 6.7.1.4 Cerebellum 6.7.2 Muscle fiber types 6.7.3 Motor units 6.7.4 Muscle proprioceptors 6.7.5 Axons 6.7.6 Reflexes 6.7.7 Tremor 6.7.8 Negative feedback and time delays 6.7.9 Renshaw Cells 6.7.10 Summary 6.8 Neural control of locomotion 6.8.1 Gait comparisons 6.8.2 Control of a single limb 6.8.3 Reflex reversal 6.8.4 Mechanical oscillator 6.8.5 Entrainment of frequency 6.8.6 Stimulated locomotion 6.8.7 Legged vehicles 6.8.8 Summary 6.9 Mechanisms of locomotion 6.9.1 Motion-capture laboratories 6.9.2 Determinants of gait 6.9.3 Inverted pendulum walking 6.9.4 Locomotion in reduced gravity 6.9.5 Elastic storage of energy 6.9.6 Cost of running 6.9.7 Up- and downhills 6.9.8 Running with weights 6.9.9 Summary 6.10 Effects of scale 6.10.1 Dimensionless analysis 6.10.2 Scaling by geometric similarity 6.10.3 The role of gravity and geometry 6.10.4 Body proportions 6.10.5 Metabolic power 6.10.6 Summary 6.11 Conclusion References Further reading 7 The basics of gait analysis 7.1 Introduction 7.2 The concept of skill 7.3 The skill of gait 7.3.1 Definition of gait analysis 7.4 Periods and phases of gait 7.5 Spatiotemporal parameters of gait 7.5.1 Step width and lateral stepping gait: a special case 7.5.2 Stride time and variability: a special case 7.6 Determinants of gait 7.7 Conclusions References Further reading 8 Gait variability: a theoretical framework for gait analysis and biomechanics 8.1 Introduction 8.2 Conceptual approaches to gait variability 8.2.1 Amount of variability 8.2.2 Complexity of variability 8.2.3 Optimal movement variability 8.2.4 Summary: sources of gait variability 8.3 Gait analysis and biomechanical measurements for gait variability 8.3.1 Equipment options for data collection 8.3.1.1 Visual observation 8.3.1.2 Instrumented gait walkways 8.3.1.3 Foot-switch systems 8.3.1.4 Inertial sensors 8.3.1.5 Three-dimensional motion capture systems 8.3.1.6 Force plate systems 8.3.2 Selection of task demands and environmental conditions 8.3.3 Analyzing the amount of gait variability 8.3.4 Analyzing the complexity of gait variability 8.3.4.1 Largest Lyapunov exponent 8.3.4.2 Approximate entropy 8.3.4.3 Detrended fluctuation analysis 8.4 Examples from clinical research 8.4.1 Gait variability as a biomarker of aging or pathology 8.4.2 Gait variability as an outcome measure following intervention 8.5 Future directions References 9 Coordination and control: a dynamical systems approach to the analysis of human gait 9.1 Introduction 9.2 Hallmark properties of a dynamical system 9.2.1 State space 9.2.2 Modality, inaccessibility, and sudden jumps 9.2.3 Divergence 9.2.4 Critical fluctuations, critical slowing down, and hysteresis 9.2.5 Interim summary 9.3 A dynamical systems approach to gait analysis 9.3.1 Phase portraits and phase angles 9.3.2 Continuous and point estimate relative phase 9.3.3 Phase portrait normalization 9.3.4 The Hilbert transform for estimating relative phase 9.3.5 Statistical summaries of relative phase dynamics 9.4 Applications of relative phase dynamics to human gait 9.4.1 Relative phase dynamics after anterior cruciate ligament reconstruction surgery 9.4.2 Relative phase dynamics and aging 9.5 Summary and concluding remarks References 10 A tutorial on fractal analysis of human movements 10.1 Introduction 10.2 Fractal theory and its connection to human movement 10.2.1 A geometrical interpretation 10.2.2 A statistical interpretation: demystifying fractal analysis 10.2.3 Fractals in physiology and psychology 10.3 Fractal analysis of time series data 10.3.1 Detrended fluctuation analysis 10.3.1.1 Best practices suggestions for applying detrended fluctuation analysis to human movement data Plot your data Time series length Choosing a polynomial order Which timescales should you use? 10.3.2 Multifractal detrended fluctuation analysis: It’s still that simple (almost) 10.3.2.1 An intuitive introduction to multifractals 10.3.2.2 A brief tutorial on multifractal detrended fluctuation analysis 10.3.2.3 Practical considerations 10.4 Applications to laboratory data 10.4.1 Example 1: Application to human gait 10.4.1.1 Monofractal results and discussion 10.4.1.2 Multifractal results and discussion 10.4.1.3 General discussion 10.4.2 Example 2: Detrended fluctuation analysis applied to visual-motor tracking 10.4.2.1 Results and discussion 10.5 Conclusion References 11 Future directions in biomechanics: 3D printing 11.1 Introduction 11.2 Lower extremity applications 11.2.1 Foot orthoses 11.2.2 Ankle foot orthoses 11.3 Upper extremity applications 11.4 Methods for three-dimensional printing assistive devices 11.5 Anatomical modeling for surgical planning 11.6 Fracture casting 11.7 Upper extremity three-dimensional printed exoskeleton for stroke patients 11.8 Implementation of a three-dimensional printing research laboratory 11.9 Current Food and Drug Administration recommendations of three-dimensional printed medical devices 11.9.1 Design 11.9.2 Materials 11.9.3 Printing characteristics/parameters 11.9.4 Physical/mechanical assessment 11.9.5 Biological considerations 11.10 Limitations 11.11 Future perspectives References Index Back Cover