دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوفیزیک ویرایش: نویسندگان: Ricardo Armentano Feijoo. Edmundo Cabrera Fischer سری: IPEM–IOP Series in Physics and Engineering in Medicine and Biology ISBN (شابک) : 0750312823, 9780750312820 ناشر: IOP Publishing سال نشر: 2019 تعداد صفحات: 261 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Biomechanical Modeling of the Cardiovascular System به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی بیومکانیکی سیستم قلبی عروقی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدلسازی بیومکانیکی سیستم قلبی عروقی
چالشها و تجربیات دانشمندان دانشگاهی، مهندسان برجسته، محققان
صنعت و دانشجویان را گرد هم میآورد تا آنها را قادر سازد تا
نتایج همه جنبههای بیومکانیک و مهندسی بیوپزشکی را تجزیه و
تحلیل کنند. . همچنین سکوی پرشی برای بحث در مورد چالش های عملی
و پیشنهاد راه حل ها در مورد این موضوع پیچیده فراهم می
کند.
Biomechanical Modeling of the Cardiovascular
System brings together the challenges and
experiences of academic scientists, leading engineers,
industry researchers and students to enable them to analyse
results of all aspects of biomechanics and biomedical
engineering. It also provides a springboard to discuss the
practical challenges and to propose solutions on this complex
subject.
PRELIMS.pdf Preface Acknowledgments Author biographies Ricardo L Armentano Edmundo I Cabrera Fischer Leandro J Cymberknop Introduction Outline placeholder Physical modeling Mathematical modeling Final comments References CH001.pdf Chapter 1 Structural basis of the circulatory system 1.1 Introduction 1.2 Cardiac structure 1.2.1 Heart valves 1.2.2 Cardiac chambers 1.2.3 Microscopic structures 1.2.4 Electrical system 1.3 Vessel structure 1.4 The circulatory system 1.5 Human blood 1.5.1 Blood plasma 1.5.2 Blood cells 1.6 Microcirculation 1.6.1 Capillaries 1.6.2 Alveolar capillary barrier 1.6.3 Portal venous system 1.6.4 Arterial portal system 1.6.5 Arteriovenous anastomoses 1.6.6 Splenic circulation 1.6.7 Myocardial circulation References CH002.pdf Chapter 2 Human circulatory function 2.1 Hemodynamics 2.2 The left ventricular function 2.2.1 Filling phase 2.2.2 Isovolumic contraction 2.2.3 Ejection period 2.2.4 Isovolumic relaxation 2.2.5 Myocardial contractility 2.2.6 Diastolic function 2.3 Vessel function 2.3.1 Arteries 2.3.2 Veins 2.4 Blood rheology 2.4.1 Blood pressure 2.4.2 Blood volume 2.4.3 Blood flow 2.4.4 Cardiac output 2.4.5 Resistance and impedance 2.4.6 Bernoulli principle 2.4.7 Capillary function 2.4.8 Skin blood circulation 2.4.9 Coronary circulation 2.5 Venous return to right atrium References CH003.pdf Chapter 3 Mathematical background for mechanical vessel analysis 3.1 Biomechanics 3.2 The constitutive equation 3.2.1 Stress 3.2.2 Strain 3.2.3 Hooke’s law: the relationship between stress and strain 3.3 Physics of the equilibrium of blood vessels 3.4 Viscoelasticity 3.4.1 Stress relaxation, creep and hysteresis 3.5 Frequency dependence of the elastic modulus E(ω) References CH004.pdf Chapter 4 Modeling of the cardiovascular function 4.1 In vitro models 4.2 Isolated perfused animal heart 4.3 In vivo animal model 4.3.1 Cardiovascular function research during open-chest surgeries in animals 4.3.2 Cardiovascular function research in intact anesthetized animals 4.3.3 Chronically instrumented conscious animals 4.3.4 Blood pressure research in intact unanesthetized animals 4.4 Ex vivo animal model 4.5 Steady and transient states 4.6 Final comments References CH005.pdf Chapter 5 Modeling of cardiovascular dysfunction 5.1 Characteristics of human cardiovascular failure 5.2 Anatomy and physiology of animals used to model human cardiovascular diseases 5.3 Models of cardiac disease 5.3.1 Myocardial ischemia 5.3.2 Interventricular communication 5.3.3 Cardiac arrhythmias 5.4 Models of vascular disease 5.4.1 Renal hypertension 5.4.2 Arteriovenous fistulae 5.4.3 Arterial calcification 5.4.4 Endothelial dysfunction 5.5 Models of cardiac failure 5.5.1 Acute right ventricular failure 5.5.2 Acute left ventricular failure 5.5.3 Coronary microembolization 5.5.4 Rapid cardiac pacing 5.5.5 Viral myocarditis 5.5.6 Myocardial toxicity 5.6 Final comments References CH006.pdf Chapter 6 Hemodynamic modelization during therapeutical interventions: counterpulsation 6.1 Aortic counterpulsation 6.2 Left ventricular changes during aortic counterpulsation 6.3 Effects of aortic counterpulsation on blood circulation 6.4 Indexes of aortic counterpulsation 6.5 Arterial wall dynamics during aortic counterpulsation 6.6 Juxta-aortic counterpulsation 6.7 Pulmonary counterpulsation 6.7.1 Reverse blood flow during aortic counterpulsation 6.8 Enhanced external counterpulsation 6.8.1 Effects of enhanced external counterpulsation on arterial wall function 6.9 Final comments References CH007.pdf Chapter 7 Arterial wall modelization in the time and frequency domain 7.1 Linear elastic theory 7.1.1 Elasticity 7.1.2 Viscoelasticity 7.2 Implementation of models in arterial mechanics 7.2.1 The stress–strain relationship in the arterial wall 7.3 Elastic passive behavior 7.3.1 Nonlinearity of the stress–strain relationship 7.3.2 Elastic modulus of elastin fibers (EE) 7.3.3 Elastic modulus of collagen fibers (EC) 7.3.4 Recruitment function of collagen fibers (fC) 7.4 Active elastic behavior 7.4.1 Smooth muscle mechanics 7.4.2 Vascular smooth muscle activation function as a function of strain (fML) 7.5 Dynamic behavior 7.5.1 Determination of the purely elastic relationship 7.5.2 Constitutive equation of the arterial wall 7.5.3 Frequential analysis, cutoff frequency and dynamic range 7.5.4 Damping function References CH008.pdf Chapter 8 Pulse propagation in arteries 8.1 Introduction 8.1.1 Characteristics of pulse propagation 8.1.2 Definition of the constituent elements of the hydraulic opposition to cardiac ejection 8.1.3 Arterial impedance 8.1.4 Wave reflection 8.1.5 Reflection coefficient 8.1.6 Separation of incident wave and reflected wave 8.1.7 Measurement of the propagation coefficient. 8.1.8 Determination of reservoir and excess pressures 8.1.9 Physiopathological alterations in propagation characteristics References CH009.pdf Chapter 9 Damping in the vascular wall 9.1 Physiological bases of wall damping and filtering 9.1.1 The arterial wall as an oscillating system; energy and elastic and viscous work. 9.1.2 Damping or filtering function: arterial self-protection 9.1.3 The arterial wall as a mass–spring–damper system 9.1.4 The arterial wall modeled as a filter 9.1.5 The arterial wall as an active and smart ‘damper or filter’ 9.1.6 Determinants of the wall damping or filtering function: wall elasticity and viscosity 9.2 Methodological approach 9.3 Experimental applications References CH010.pdf Chapter 10 Modeling of biological prostheses 10.1 Introduction 10.1.1 Electrospinning technique 10.2 Biomechanical evaluation on electrospun vascular grafts 10.2.1 Distensibility test 10.2.2 PLLA/SPEU evaluation protocol 10.2.3 PLLA/SPEU mechanical properties assessment References CH011.pdf Chapter 11 Arterial hypertension, chaos and fractals 11.1 Complexity, health and disease 11.1.1 Unwrinkling effect 11.1.2 Influence of the reflected wave 11.2 Fractal dimension: a holistic index 11.3 Conclusion References CH012.pdf Chapter 12 Mathematical blood flow models: numerical computing and applications 12.1 Towards a patient-specific modeling for clinical applications 12.2 Interaction between blood flow and the arterial wall: fluid–structure coupling 12.3 Implementing 1D models in arterial simulations References