ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biological Approaches to Controlling Pollutants: Advances in Pollution Research

دانلود کتاب رویکردهای بیولوژیکی برای کنترل آلاینده ها: پیشرفت در تحقیقات آلودگی

Biological Approaches to Controlling Pollutants: Advances in Pollution Research

مشخصات کتاب

Biological Approaches to Controlling Pollutants: Advances in Pollution Research

ویرایش:  
نویسندگان:   
سری: Woodhead Advances in Pollution Research 
ISBN (شابک) : 0128243163, 9780128243169 
ناشر: Woodhead Publishing 
سال نشر: 2021 
تعداد صفحات: 426
[427] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Biological Approaches to Controlling Pollutants: Advances in Pollution Research به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رویکردهای بیولوژیکی برای کنترل آلاینده ها: پیشرفت در تحقیقات آلودگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب رویکردهای بیولوژیکی برای کنترل آلاینده ها: پیشرفت در تحقیقات آلودگی

رویکردهای بیولوژیکی برای کنترل آلاینده ها، آخرین نسخه از مجموعه تحقیقات پیشرفت در آلودگی، راهنمای جامعی در مورد به روزترین روش های بیولوژیکی برای پاکسازی آلاینده ها در صنایع مختلف با در نظر گرفتن مزایا، معایب و کاربردها است. از هر روش با توجه به سطوح فزاینده آلودگی و مکان‌های آلوده در سرتاسر جهان به دلیل رشد بالای جمعیت و گسترش صنعتی، جدیدترین پیشرفت‌ها در تکنیک‌های اصلاح بیولوژیکی یک زمینه مهم مطالعاتی است که در آن محققان به پیشرفته‌ترین روش‌ها نیاز دارند. مطالعه این کتاب برای دانشمندان محیط زیست، همراه با فارغ التحصیلان، دانشگاهیان و محققانی که در زمینه آلودگی محیط زیست کار می کنند ضروری است. همچنین برای مهندسان محیط زیست و سایر متخصصانی که نیاز به ارزیابی آخرین پیشرفت‌ها در کنترل بیوتکنولوژیک آلاینده‌ها دارند، جالب خواهد بود. ارائه پیشرفته‌ترین پیشرفت‌ها در زمینه‌های مختلف مرتبط با استفاده از بیوتکنولوژی و تکنیک‌های بیولوژیکی در کنترل آلاینده‌ها اطلاعات و روش‌های عمیقی را برای بکارگیری پاکسازی زیستی برای انواع آلاینده‌ها ارائه می‌دهد که توسط تیمی از نویسندگان در سراسر جهان برای ارائه یک جهانی جهانی نوشته شده است. چشم انداز پیشرفت در زیست پالایی


توضیحاتی درمورد کتاب به خارجی

Biological Approaches to Controlling Pollutants, the latest release in the Advances in Pollution Research series, is a comprehensive guide on the most up-to-date biological methods for remediation of pollutants across a variety of industries, with consideration for the advantages, disadvantages and applications of each method. Considering the increasing levels of pollution and contaminated sites worldwide from high population growths and industrial expansion, the most recent advances in biological remediation techniques is an important field of study and one in which researchers need the most cutting-edge methodologies. This book is a necessary read for environmental scientists, along with postgraduates, academics and researchers working in the area of environmental pollution. It will also be of interest to environmental engineers and any other practitioners who need to evaluate the latest advances in biotechnological control of pollutants. Presents the most cutting-edge advances in a variety of fields relevant to the use of biotechnology and biological techniques in pollutant control Provides in-depth information and methodologies for applying bioremediation to a variety of pollutants Written by a worldwide team of authors to provide a global perspective on the advances in bioremediation



فهرست مطالب

Biological Approaches to Controlling Pollutants: Advances in Pollution Research
Copyright
Contributors
Acknowledgements
1. Advances in bioremediation: introduction, applications, and limitations
	1.1 Introduction
	1.2 Applications of bioremediation
		1.2.1 Solid waste management and sewage treatment
		1.2.2 Removal of toxic metals from polluted water bodies
		1.2.3 Cleaning of oil spills
		1.2.4 Removal of pesticides from agriculture field
			1.2.4.1 Remediation methods for pesticides
	1.3 Limitations of bioremediation
	1.4 Conclusion
	References
2. Advances in microbial management of soil
	2.1 Introduction
	2.2 Principal fungal species in mycoremediation
		2.2.1 White rot fungi
		2.2.2 Brown rot fungi
		2.2.3 Soft rot fungi
	2.3 Mechanisms in mycoremediation
		2.3.1 Lignolytic enzymes
		2.3.2 Lignin degradation occurs during nutrient starvation
		2.3.3 Cellulolytic enzymes
	2.4 Establishing mycoremediation systems
	2.5 Factors influencing mycoremediation
		2.5.1 Carbon and nitrogen sources
		2.5.2 pH
		2.5.3 Aeration
		2.5.4 Temperature
		2.5.5 Moisture content
	2.6 Conclusions
	References
	Further reading
3. Adsorption of Cr(VI) ions from aqueous solutions by diatomite and clayey diatomite
	3.1 Introduction
	3.2 Experimental
		3.2.1 Materials and methods
		3.2.2 Adsorption experiment
	3.3 Results and discussion
		3.3.1 Physical-mechanical characterization
			3.3.1.1 X-ray analysis
			3.3.1.2 Fourier transform infrared analysis
			3.3.1.3 Thermal and thermogravimetric analysis
			3.3.1.4 Scanning electron microscopy analysis
			3.3.1.5 Transmission electron microscopy investigations
			3.3.1.6 PHPZC of clayey diatomite and pure diatomite
			3.3.1.7 Effect of adsorbent dose on adsorption of Cr(VI) on diatomite end clayey diatomite
			3.3.1.8 Effect of contact time
	3.4 Conclusions
	References
4. Advances in bioremediation of antibiotic pollution in the environment
	4.1 Introduction
	4.2 Sources of antibiotics
		4.2.1 Concentration of antibiotics
		4.2.2 Adverse effects of antibiotics
	4.3 Bioremediation
		4.3.1 Bioremediation techniques and strategies
			4.3.1.1 In situ bioremediation
			4.3.1.2 Ex-situ techniques
			4.3.1.3 Bacteria–bacterial remediation
			4.3.1.4 Aerobic methods of bioremediation
			4.3.1.5 Anaerobic methods of bioremediation
			4.3.1.6 Cyanobacteria for bioremediation
			4.3.1.7 Antibiotic degradation by fungi (mycoremediation)
			4.3.1.8 Antibiotic degradation by algae (phytoremediation)
	4.4 Recent advances in bioremediation of antibiotics
		4.4.1 Omics approach in bioremediation
		4.4.2 Role of nanotechnology in bioremediation
		4.4.3 Hybrid process for bioremediation
	4.5 Future scope and limitations of bioremediation techniques
	4.6 Limitations of bioremediation
	4.7 Conclusions
	References
5. Advances in biodegradation and bioremediation of environmental pesticide contamination
	5.1 Introduction
	5.2 Pesticides: a necessary evil
	5.3 Classification of pesticides
	5.4 Pesticide stock/banned pesticides
	5.5 Pesticides and soil ecology
	5.6 Overview of green technologies
	5.7 Microbial population in bioremediation process or microbial remediation
		5.7.1 On this basis microbes can be divided into several groups
			5.7.1.1 Aerobic
			5.7.1.2 Anaerobic
			5.7.1.3 Methylotrophs
			5.7.1.4 Ligninolytic fungi
			5.7.1.5 Bioaugmentation
			5.7.1.6 Bioventing
			5.7.1.7 Bioreactors
			5.7.1.8 Land farming
			5.7.1.9 Composting
			5.7.1.10 Biofilter
			5.7.1.11 Biosparging
			5.7.1.12 Biopiles
	5.8 Factors affecting bioremediation
	5.9 Advantages of bioremediation
	5.10 Disadvantages of bioremediation
	5.11 Phytoremediation
		5.11.1 Limitations and disadvantages of phytoremediation (Chaudhry et al., 2002)
		5.11.2 Advantages of phytoremediation (Moosavi and Seghatoleslami, 2013)
	5.12 Phycoremediation
		5.12.1 Phycostabilization
		5.12.2 Phycovolatilization
		5.12.3 Phycofiltration
		5.12.4 Constructed wetlands
		5.12.5 Hydraulic barrier
		5.12.6 Factors affecting algae production
		5.12.7 Advantages of phycoremediation (Rajkumar and Takriff, 2016)
		5.12.8 Applications of phycoremediation
	5.13 Rhizoremediation
		5.13.1 Role of rhizospheric microbes in rhizoremediation (Seneviratne et al., 2017)
		5.13.2 Steps taken in process of rhizoremediation
		5.13.3 Factors affecting rhizoremediation (Kaur et al., 2019)
	5.14 Biodegradation of pesticides
	5.15 Biodegradation of bound pesticides
	5.16 Conclusion
	References
	Further reading
6. Advances in biodegradation and bioremediation of arsenic contamination in the environment
	6.1 Introduction
	6.2 Biological methods for arsenic removal
		6.2.1 Bioremediation
			6.2.1.1 Mechanism of arsenic detoxification in microbes
		6.2.2 Advances in bioremediation
			6.2.2.1 Bioremediation by biofilms
			6.2.2.2 Arsenic resistance mechanism controlled by genes
		6.2.3 Phytoremediation
			6.2.3.1 Mechanism of arsenic detoxification in plants
		6.2.4 Advances in phytoremediation
	6.3 Conclusion
	References
7. Advances in biodegradation and bioremediation of emerging contaminants in the environment
	7.1 Introduction
	7.2 Constructed wetlands
		7.2.1 Pharmaceutical (nonsteroidal antiinflammatory) drugs and personal care products
		7.2.2 Pesticides
		7.2.3 Surfactants
		7.2.4 Hormones
		7.2.5 Antibiotic-resistant genes
	7.3 Membrane bioreactors
	7.4 Electromicrobiology
	7.5 Nanotechnology for bioremediation
	References
	Further reading
8. Advances in dye contamination: health hazards, biodegradation, and bioremediation
	8.1 Introduction
	8.2 Health hazards of dyes to humans
		8.2.1 Health hazards of dyes to nature
		8.2.2 Health hazards of dyes to flora and fauna
	8.3 Natural dyes
		8.3.1 Madder
		8.3.2 Tyrian purple
	8.4 Synthetic dyes
		8.4.1 Azo dyes
		8.4.2 Triphenylmethane dyes
		8.4.3 Anthraquinone dyes
	8.5 Bioremediation
		8.5.1 Bioremediation of dyes
	8.6 Health hazards
	8.7 Biodegradation
	8.8 Aerobic biodegradation
	8.9 Anaerobic biodegradation
	8.10 Biodegradation of dyes
	8.11 Methods for biodegradation of dyes
	8.12 Past strategies
	8.13 Microbes used in biodegradation of dyes
	8.14 Biodegradation of dyes by bacteria
	8.15 Decolorization of azo dyes by bacteria
	8.16 Biodegradation of dyes by fungi
	8.17 Phytoremediation of dyes
	8.18 Conclusion
	References
9. Advances in bioremediation of industrial wastewater containing metal pollutants
	9.1 Introduction
	9.2 Sources of heavy metal contaminants
	9.3 Role of microbes in bioremediation process
	9.4 Mechanism of microbial detoxification of heavy metals
		9.4.1 Intracellular sequestration
		9.4.2 Extracellular sequestration
		9.4.3 Extracellular barrier preventing metal entry into microbial cell
		9.4.4 Methylation of metals
		9.4.5 Reduction of heavy metal ions by microbial cells
		9.4.6 Bioremediation capacity of microorganisms on heavy metals
		9.4.7 Bacteria remediation capacity of heavy metals
		9.4.8 Fungi remediation capacity of heavy metals
		9.4.9 Heavy metal removal using biofilm
		9.4.10 Algae remediation capacity of heavy metals
		9.4.11 Immobilized biosorption of heavy metals
	9.5 Conclusion
	References
10. Advances in microbial and enzymatic degradation of lindane at contaminated sites
	10.1 Introduction
	10.2 Lindane and India
	10.3 Lindane degradation
		10.3.1 Microbial diversity in lindane degradation
			10.3.1.1 Algal degradation
			10.3.1.2 Actinomycetes degradation
			10.3.1.3 Fungal degradation
		10.3.2 Genes and enzymes for lindane degradation
			10.3.2.1 The lin genes
	10.4 Future prospects
	References
11. Advances in bioremediation of nonaqueous phase liquid pollution in soil and water
	11.1 Introduction
		11.1.1 Effects of pollution
		11.1.2 Nonaqueous phase liquid pollution
		11.1.3 Bioremediation
	11.2 Materials and methods
	11.3 Results and discussion
		11.3.1 Bioremediation techniques: an overview
		11.3.2 Bioremediation of nonaqueous phase liquid polluted soil–water resources
		11.3.3 Bacterial remediation
		11.3.4 Biosurfactants
		11.3.5 Bioaugmentation
		11.3.6 Upgraded biostimulation strategies
		11.3.7 Phycoremediation
		11.3.8 Mycoremediation
		11.3.9 Plant-assisted bioremediation strategies
		11.3.10 Combined bioremediation strategies of nonaqueous phase liquids
		11.3.11 Constructed wetland treatment of nonaqueous phase liquids
		11.3.12 Nonaqueous phase liquid metabolism and associated kinetics models
	11.4 Conclusion
	References
12. Advances in bioremediation of organometallic pollutants: strategies and future road map
	12.1 Introduction
	12.2 Properties of organometallic compounds
	12.3 Sources of organometallic pollutants
	12.4 Toxicity and effects of organometallic pollutants
	12.5 Bioremediation factors
	12.6 Bioremediation process
	12.7 Current strategies in the field of organometallic pollutants
	12.8 Future road map for reducing organometallic pollutants
		12.8.1 Future challenges
	12.9 Conclusion
	References
	Further reading
13. Bioremediation of polycyclic aromatic hydrocarbons from contaminated dumpsite soil in Chennai city, India
	13.1 Introduction
	13.2 Materials and methods
		13.2.1 Enrichment of indigenous microbes
			13.2.1.1 Degradation and growth study of indigenous microbes from soil samples
				13.2.1.1.1 Effect of temperature
				13.2.1.1.1 Effect of temperature
		13.2.2 Effect of co-substrates on isolates from soil samples
		13.2.3 Experimental setup for semimicrocosm study
		13.2.4 Instrumental analysis
			13.2.4.1 High performance liquid chromatography
	13.3 Results and discussion
		13.3.1 Overview of the bioremediation process
		13.3.2 Screening and isolation of microbes from dumpsite soil
		13.3.3 Degradation of napthalene by microbial species isolated from soil samples
		13.3.4 Degradation of phenanthrene by microbial species isolated from the soil sample
		13.3.5 Effect of co-substrates on napthalene degradation
		13.3.6 Effect of co-substrates on phenanthrene degradation
		13.3.7 Semimicrocosm study
	13.4 Conclusion
	References
14. Advances in bioremediation of biosurfactants and biomedical wastes
	14.1 Introduction
	14.2 Life cycle assessment of biomedical waste
	14.3 Bioremediation
		14.3.1 Bioremediation techniques
		14.3.2 Bioremediation of medical waste: state of the art
	14.4 Biosurfactants
		14.4.1 Biosurfactants as useful tools in bioremediation
	14.5 Conclusion
	References
15. Can algae reclaim polychlorinated biphenyl–contaminated soils and sediments?
	15.1 Introduction
		15.1.1 Phycoremediation of polychlorinated biphenyls
		15.1.2 Modes of phycoremediation
			15.1.2.1 Bioaccumulation
			15.1.2.2 Degradation
		15.1.3 Factors that affect phycoremediation
		15.1.4 The phycoremediation promise of genetically modified algae
	15.2 Conclusion
	References
16. Bacterial remediation to control pollution
	16.1 Introduction
	16.2 Bacterial remediation
	16.3 Types of pollutants subjected for bacterial remediation
		16.3.1 Bacterial remediation of organic pollutants
			16.3.1.1 Pesticides
			16.3.1.2 Hydrophobic toxic environmental pollutants
			16.3.1.3 Explosives
			16.3.1.4 Volatile organic compounds
		16.3.2 Bacterial remediation of inorganic pollutants
			16.3.2.1 Heavy metals
			16.3.2.2 Metalloids
			16.3.2.3 Radionuclides
		16.3.3 Bacterial remediation of perchlorate
		16.3.4 Bacterial remediation of xenobiotics and aromatic compounds as pollutants
		16.3.5 Bacterial remediation of brewery effluents and pollutants in wastewater
	16.4 Future prospects of bacterial remediation of pollutants
	16.5 Conclusion
	References
17. Role of lower plants in the remediation of polluted systems
	17.1 Introduction
	17.2 Bryophytes
		17.2.1 Use of bryophytes in controlling air pollution
		17.2.2 Use of bryophytes in controlling water pollution
		17.2.3 Use of bryophytes in controlling soil pollution
	17.3 Lichens
		17.3.1 Use of lichen in controlling air pollution
		17.3.2 Use of lichens in controlling water pollution
		17.3.3 Use of lichen in controlling soil pollution
	17.4 Algae
		17.4.1 Use of algae in controlling air pollution
		17.4.2 Use of algae in controlling water pollution
		17.4.3 Use of algae in controlling soil pollution
	17.5 Fungi
		17.5.1 Use of fungi in controlling air pollution
		17.5.2 Use of fungi in controlling water pollution
		17.5.3 Use of fungi in controlling soil pollution
	17.6 Summary and conclusion
	References
18. Higher plant remediation to control pollutants
	18.1 Introduction
	18.2 Heavy metal pollutants
	18.3 Phytoremediation technology
		18.3.1 Phytoremediation mechanism
		18.3.2 Plant species used in phytoremediation
	18.4 Air pollutants and their remediation
		18.4.1 Phytoremediation of air pollutants
		18.4.2 Phytoremediation mechanism for removal of air pollutants
		18.4.3 Remediation of particulate matter/aerosol
		18.4.4 Remediation of gaseous pollutants
			18.4.4.1 Carbon monoxide
			18.4.4.2 Carbon dioxide
			18.4.4.3 Sulfur oxides
			18.4.4.4 Nitrogen oxides
			18.4.4.5 Ozone
			18.4.4.6 Volatile organic compounds
			18.4.4.7 Benzene, toluene, and xylenes
			18.4.4.8 Polycyclic aromatic hydrocarbons and phenols
		18.4.5 Phytoremediation of indoor and outdoor pollutants
	18.5 Phytoremediation of water pollutants
		18.5.1 Aquatic plants and phytoremediation
	18.6 Advantages of phytoremediation
	References
19. Aquatic plant remediation to control pollution
	19.1 Introduction
		19.1.1 Pollution
		19.1.2 Pollutant contaminants in aquatic ecosystem
			19.1.2.1 Inorganic pollutants
			19.1.2.2 Organic pollutants
			19.1.2.3 Radionuclide contamination
		19.1.3 Phytotechnologies
	19.2 Materials and methods
	19.3 Results and discussion
		19.3.1 Phytoremediation technology
		19.3.2 Characteristics of phytoremediation of aquatic plants
		19.3.3 Mechanism of phytoremediation
			19.3.3.1 Phytoextraction
			19.3.3.2 Phytostabilization
			19.3.3.3 Rhizofiltration
			19.3.3.4 Phytovolatilization
			19.3.3.5 Phytodegradation
			19.3.3.6 Phytotransformation
		19.3.4 The potential roles of aquatic plants in remediation of polluted water resources
			19.3.4.1 Bioremediation
			19.3.4.2 Phycoremediation—an emerging technology
			19.3.4.3 Phytoremediation of industrial effluents
			19.3.4.4 Phytoremediation of metropolitan wastewaters
		19.3.5 Other preferences for aquatic plants
	19.4 Conclusion
	References
20. Biofilm in remediation of pollutants
	20.1 Introduction
	20.2 Characteristic features of biofilm
	20.3 Bioremediation
	20.4 Mechanism of action of biofilms in bioremediation
	20.5 Role of microbes in bioremediation
	20.6 Types of bioremediation
	20.7 Approaches for use of biofilms based remediation (in situ)
		20.7.1 Biostimulation or natural attenuation
		20.7.2 Bioaugmentation or bioenhancement
		20.7.3 Approaches for biofilm-based remediation (ex situ)
		20.7.4 Fixed-bed reactor
		20.7.5 Fluidized-bed reactor
		20.7.6 Rotating biological contactors
		20.7.7 Membrane biofilm reactor
		20.7.8 Sequential aerobic-anaerobic two-stage biofilm reactor
	20.8 Types of pollutants remediated by biofilms
		20.8.1 Persistent organic pollutants
			20.8.1.1 Petroleum industry
		20.8.2 Heavy metals
	20.9 Advantages of biofilm-based bioremediation
	20.10 Disadvantages of biofilm-based bioremediation
	20.11 Conclusion
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z




نظرات کاربران