ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biogenic Nano-Particles and their Use in Agro-ecosystems

دانلود کتاب نانو ذرات بیوژنیک و کاربرد آنها در اکوسیستم های کشاورزی

Biogenic Nano-Particles and their Use in Agro-ecosystems

مشخصات کتاب

Biogenic Nano-Particles and their Use in Agro-ecosystems

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9811529841, 9789811529849 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 610 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Biogenic Nano-Particles and their Use in Agro-ecosystems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانو ذرات بیوژنیک و کاربرد آنها در اکوسیستم های کشاورزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
Editors and Contributors
	About the Editors
	Contributors
1: Application of Nanotechnology in Agricultural Farm Animals
	1.1	 Introduction
	1.2	 Improvement in Animal Health
		1.2.1	 Veterinary Diagnostics
		1.2.2	 Veterinary Therapeutics and Vaccine Delivery
	1.3	 Improvement in Animal Production
		1.3.1	 Nanofeed
		1.3.2	 Nano-Reproduction
	1.4	 Conclusion
	References
2: Nanoparticles in Plant Growth and Development
	2.1	 Introduction
	2.2	 Molecular Mechanism of Nanoparticles in Plant Growth and Protection
		2.2.1	 Mode of Entry and Uptake
		2.2.2	 Nanoparticle-Plant Interactions
		2.2.3	 Translocation
	2.3	 Effect of Nanoparticles
		2.3.1	 Effect on Photosynthesis
		2.3.2	 Effect on Seed Germination
		2.3.3	 Root and Shoot Growth
		2.3.4	 Effect on Nutrient Delivery
		2.3.5	 Effect on Rhizospheric Environment
		2.3.6	 Toxicity
			2.3.6.1	 Pathogen Suppression
			2.3.6.2	 Regulated Delivery of Pesticides
			2.3.6.3	 Physiological and Biochemical Changes in Plants
		2.3.7	 Accumulation of Nanoparticles
			2.3.7.1	 In Plants
			2.3.7.2	 In Soil and Water Bodies
	References
3: Use of Nanotechnology in Quality Improvement of Economically Important Agricultural Crops
	3.1	 Introduction
	3.2	 Nanoparticles in Agriculture and Their Fabrication
	3.3	 Polymers Used as Nanocarriers
	3.4	 Nanoparticles for Seed Germination and Plant Growth
	3.5	 Nanofertilizers
	3.6	 Classification of Nanofertilizers
	3.7	 Benefits of Nanofertilizers
	3.8	 Advantages of Nanofertilizers
	3.9	 Nanoherbicides
	3.10	 Advantages of Nanoherbicides
	3.11	 Nanopesticides
	3.12	 Advantages of Nanopesticides
	3.13	 Nanosensors and Their Applications
	3.14	 Classification of Nanosensors
	3.15	 Advantages of Nanosensors
	3.16	 Nanotechnology for Post-harvest Improvement
	3.17	 Microbial Nanoformulations in Quality Enhancement
	3.18	 Nanopackaging Technology
	References
4: Agriculture and Nanoparticles
	4.1	 Introduction
	4.2	 Effects of Nanoparticles on Plant Development
	4.3	 Conclusion
	References
5: Large-Scale Production/Biosynthesis of Biogenic Nanoparticles
	5.1	 Introduction
	5.2	 Detoxification Principles
	5.3	 Biosynthesis of Biogenic Nanoparticles
	5.4	 Industrial-Scale Production/Biosynthesis of Biogenic Nanoparticles
	5.5	 Process Scale-Up Principles
	References
6: Role of Nanotechnology in the Management of Agricultural Pests
	6.1	 Introduction
	6.2	 Methods for the Management of Insects/Pests
	6.3	 Nanoparticles as a New Tool for Pest Management
	6.4	 Role of Naturally Occurring Nanoparticles in Insects
	6.5	 Nanoparticles Used in Biopesticides Controlled Release Formulations
	6.6	 Classes of Nanoparticles
	6.7	 Nanopesticides
	6.8	 Methods to Develop Nanoparticles for Pest Control
	6.9	 Mechanisms of Action of Nanoparticles
	6.10	 Conclusion: Nanotechnology Risks and Regulation
	References
7: Biogenic Nanomaterials: Synthesis and Its Applications for Sustainable Development
	7.1	 Introduction
	7.2	 Nanoparticles and Its Classification
	7.3	 Different Methods of Synthesis of NPs
		7.3.1	 Green Chemistry in Fabrication of Nanomaterials/Nanostructures
			7.3.1.1	 Biogenic NPs
				7.3.1.1.1 Microbial Synthesis of Nanoparticles
			7.3.1.2	 Bacteria-Based NP Synthesis
			7.3.1.3	 Fungi-Based NP Synthesis
			7.3.1.4	 Algae-Based NP Synthesis
			7.3.1.5	 Yeast-Based NP Synthesis
			7.3.1.6	 Plant-Based NP Synthesis
			7.3.1.7	 Biological Particle-Based NP Synthesis
			7.3.1.8	 Biodegradable Waste-Based NP Synthesis
	7.4	 Factors that Impact the Synthesis of Nanoparticles
		7.4.1	 Impact of pH
		7.4.2	 Impact of Temperature
		7.4.3	 Impact of Plant Extract Concentration
		7.4.4	 Impact of Metal Ion Concentration
		7.4.5	 Impact of Reaction Time
		7.4.6	 Capping Agents
			7.4.6.1	 Green Capping Agents
			7.4.6.2	 Polysaccharides
			7.4.6.3	 Carboxymethyl Cellulose (CMC)
			7.4.6.4	 Polyethylene Glycol (PEG)
	7.5	 Applications
		7.5.1	 Agriculture
			7.5.1.1	 Significance of Nanotechnology in Pest Management
			7.5.1.2	 Stress Reduction
				7.5.1.2.1 Application of Silicon Nanoparticles to Eradicate Drought and Salinity Stress in Plants
				7.5.1.2.2 Application of Si Nanoparticles to Eradicate Disease in Plants
		7.5.2	 Wastewater Treatment
			7.5.2.1	 Biogenic NPs for Heavy Metal Removal
			7.5.2.2	 Organic Pollutant Removal
			7.5.2.3	 Radioactive and Inorganic Pollutants Removal
			7.5.2.4	 Metallic and Nonorganic Pollutant Removal
			7.5.2.5	 Pharmaceutical Pollutant Removal
		7.5.3	 Growth Promotion
		7.5.4	 Present Challenges in Agriculture and Nanotechnology-Based Solutions
	7.6	 Conclusion
	References
8: An Overview on the Effect of Soil Physicochemical Properties on the Immobilization of Biogenic Nanoparticles
	8.1	 Introduction
	8.2	 Synthesis of Biogenic Nanoparticles
	8.3	 Applications of Biogenic Synthesis of NPs
	8.4	 Biogenic Nanoparticles in Soils
	8.5	 Effect of Soil Physicochemical Properties on Immobilization of Biogenic Nanoparticles
	8.6	 Influence of Soil Properties on the Toxicity of Nanoparticles
	8.7	 Toxicity of Nanoparticles in Soil
	8.8	 Conclusion and Future Research
	References
9: Biogenic Nanoparticles as Novel Sustainable Approach for Plant Protection
	9.1	 Introduction
	9.2	 Biogenic Nanoparticle
	9.3	 Nanoparticle and Pathogen Control
	9.4	 Conclusions
	References
10: Biogenic Nanoparticles in the Insect World: Challenges and Constraints
	10.1	 Introduction
	10.2	 Biogenic Nanoparticles and Insects
	10.3	 Engineering Biogenic Nanoparticle in Control of Insects
		10.3.1	 Mode of Action of Nanoparticles Against Insect Pests
	10.4	 Conclusions
	References
11: Biogenic Synthesis of Gold Nanoparticles and Their Potential Application in Agriculture
	11.1	 Introduction
	11.2	 Biosynthesis of Nanoparticles
		11.2.1	 Synthesis of Gold Nanoparticles Using Plant
			11.2.1.1	 Plant Biomass
			11.2.1.2	 Plant Extracts
		11.2.2	 Synthesis of Gold Nanoparticles Using Bacteria
		11.2.3	 Synthesis of Gold Nanoparticles Using Actinomycetes, Algae and Yeast
		11.2.4	 Synthesis of Gold Nanoparticles Using Fungi
	11.3	 Characterization of Gold Nanoparticles
	11.4	 Applications of Gold Nanoparticles in Agriculture
	11.5	 Conclusions
	References
12: Application of Biogenic and Non-biogenic Synthesized Metal Nanoparticles on Longevity of Agricultural Crops
	12.1	 Introduction
	12.2	 Application of Biological (Biogenic/Green) Synthesized Nanoparticles to Improve Longevity of Agricultural Crops During Postharvest
	References
13: Nanoparticles and Their Fate in Soil Ecosystem
	13.1	 Synthesis of Nanoparticles
		13.1.1	 Chemical Methods of NP Synthesis
			13.1.1.1	 Chemical Reduction Method
			13.1.1.2	 Electrochemical Method
			13.1.1.3	 Solvothermal Decomposition
			13.1.1.4	 Microemulsion/Colloidal Method
			13.1.1.5	 Sonochemical Method
			13.1.1.6	 Microwave Method
		13.1.2	 Biological Methods of NP Synthesis
			13.1.2.1	 Phytosynthesis of Nanoparticles
		13.1.3	 Microbial Synthesis of Nanoparticles
	13.2	 Fate of Nanoparticles in Soil
		13.2.1	 Effect of Nanoparticles and Materials on Plants
			13.2.1.1	 Suppressive Effects on Plants
			13.2.1.2	 Promontory Effects on Plants
		13.2.2	 Effect of Nanoparticles on Microorganisms
			13.2.2.1	 Effects of Nanoparticles on Soil Microbial Community
			13.2.2.2	 NP Effects on Individual Microbes
				13.2.2.2.1 Silver Nanoparticles
				13.2.2.2.2 Zinc and Sulphur Nanoparticles
				13.2.2.2.3 Copper and Silica Nanoparticles
	13.3	 Conclusion
	References
14: Impact of Nanoparticles on PGPR and Soil Nutrient Contents
	14.1	 Introduction
	14.2	 PGPR
		14.2.1	 Role of PGPR as a Plant Growth Enhancer
			14.2.1.1	 Direct Mechanism
			14.2.1.2	 Indirect Mechanism
	14.3	 Beneficial Aspects of PGPR
	14.4	 Disadvantages of PGPR
	14.5	 Nanotechnology in PGPR
		14.5.1	 Nanoparticles
			14.5.1.1	 Gold Nanoparticles
			14.5.1.2	 Silver Nanoparticles
	References
15: New Insights into Application of Nanoparticles for Plant Growth Promotion: Present and Future Prospects
	15.1	 Introduction
	15.2	 Nanofertilizers
		15.2.1	 Effects of Nanofertilizers on Seed Germination and Growth Parameters of the Plant
		15.2.2	 Effects of Foliar Application of Nanofertilizers
			15.2.2.1	 Advantages of Nanofertilizers
			15.2.2.2	 Controlled Release of Nanofertilizers and Nanocomplexes
	15.3	 Nanopesticides
	15.4	 Nanoparticles That Act as Carriers
		15.4.1	 Nanoparticles as Carriers for Insecticides
		15.4.2	 Nanoparticles as Carriers for Fungicides
		15.4.3	 Nanoparticles as Carriers for Herbicides
	15.5	 Pesticide Nanoformulations
	15.6	 Nanobiosensors and Agriculture
		15.6.1	 Pesticide Nanobiosensors
		15.6.2	 Nanobiosensors for Heavy Metal Detection
		15.6.3	 Nanofertilizer Nanobiosensors
	15.7	 Root Exudates (Metabolites) Nanosensors and Pathogen Detection
	15.8	 Nanosensors for Detection of Changes in Rhizosphere Microenvironment
		15.8.1	 Soil Oxygen Nanobiosensors
		15.8.2	 Soil Temperature/Moisture/pH Nanobiosensors
		15.8.3	 Sensors for Toxin Detection
	15.9	 Other Applications of Nanotechnology in the Field of Agriculture
	15.10	 Challenges and Opportunities
		15.10.1	 Regulatory Demands in Nanotechnology
		15.10.2	 Potential Consumer Safety Issues
	15.11	 Conclusion
	References
16: Nanomaterials: Emerging Trends and Future Prospects for Economical Agricultural System
	16.1	 Introduction
	16.2	 Nanotechnology in Agriculture
		16.2.1	 Plant Disease Suppression
		16.2.2	 Plant Growth and Germination
		16.2.3	 Nano-barcodes
		16.2.4	 Nanobiosensor
		16.2.5	 Agricultural Waste Management
		16.2.6	 Water Management
	16.3	 Agrochemical Applications
		16.3.1	 Nanopesticides
		16.3.2	 Nanofungicide
		16.3.3	 Nanobactericide
		16.3.4	 Nanoinsecticide
		16.3.5	 Nanoherbicides
		16.3.6	 Nanofertilizers
	16.4	 Targeted Genetic Engineering
	16.5	 Labeling and Imaging
	16.6	 Future Prospects
	References
17: Integrated Approach of Agri-nanotechnology: Recent Developments, Challenges and Future Trends
	17.1	 Introduction
	17.2	 Integrated Approach of Nanotechnology and Nanoinformatics in Agriculture
	17.3	 Precision Farming
	17.4	 Nanomaterials as Antimicrobial Agents for Plant Pathogens
	17.5	 Monitoring
	17.6	 Smart Delivery Systems
	17.7	 Minimizing Soil and Groundwater Pollution
	17.8	 Engineering of Crops
	17.9	 Smart Field Systems
	17.10	 Nanobarcodes and Nanoprocessing
	17.11	 Risk Factors and Future Considerations in the Field of Agri-nanotechnology
	17.12	 Conclusion
	References
18: Green-Nanotechnology for Precision and Sustainable Agriculture
	18.1	 Introduction
	18.2	 Green Nanotechnology
	18.3	 Nano-agrotechnology
		18.3.1	 Biosynthesis of Nanomaterials
			18.3.1.1	 Plant Based
			18.3.1.2	 Microbes Based
	18.4	 Applications of Nanotechnology in Precision Agriculture
		18.4.1	 Nano-fertilizer
		18.4.2	 Nanocides
		18.4.3	 Sensors
			18.4.3.1	 Pesticidal Residues Determination
			18.4.3.2	 Diagnosis of Plant Pathogens
		18.4.4	 Nano-barcodes
		18.4.5	 Soil Management
			18.4.5.1	 Soil Analysis
			18.4.5.2	 Water Retention/Absorption Holding Capacity
			18.4.5.3	 Soil Decontamination
				18.4.5.3.1 Organic Contaminants’ Removal
				18.4.5.3.2 Inorganic Contaminants’ Removal
		18.4.6	 Water Management
	18.5	 Conclusion
	References
19: Nanotechnology and Nutrigenomics
	19.1	 Introduction
	19.2	 Different Types of Nanotechnology
	19.3	 Biogenic Nanoparticles - The Green Nanoparticles
	19.4	 Synthesis of Biogenic Nanoparticles – The Factory Within
	19.5	 Nanotechnology for Delivery of Bioactives or Drugs
	19.6	 Advances in Nutrigenomics
	19.7	 Nanotechnology and Nutrigenomics – The Combined Perspective
	References
20: Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes
	20.1	 Introduction
	20.2	 Classification of Nutraceuticals
	20.3	 Commercial Nutraceuticals
		20.3.1	 Nanocarriers
	20.4	 Classification of Nanocarriers
		20.4.1	 Polymeric Nanocarriers
			20.4.1.1	 Polymeric Micelles
			20.4.1.2	 Polymeric Hydrogels
			20.4.1.3	 Polymeric Conjugates
		20.4.2	 Lipid-Based Nanocarriers
			20.4.2.1	 Liposomes
			20.4.2.2	 Solid Lipid Nanoparticles
			20.4.2.3	 Nanoemulsions
			20.4.2.4	 Self-Assembled and Polymeric Nanocarriers
		20.4.3	 Inorganic Nanocarriers
			20.4.3.1	 Carbon Nanotubes
			20.4.3.2	 Other Inorganic Nanocarriers
		20.4.4	 Functional Therapeutic Nanoparticles (Hybrid Nanocarriers)
			20.4.4.1	 Plasmonic Nanoparticles
			20.4.4.2	 Chemotherapeutic Drugs Combination with Nutraceuticals Using Nanocarriers
	20.5	 Mechanism of Action
		20.5.1	 Typical Nanocarriers for Encapsulation
		20.5.2	 Factors Controlling Release from Nanocarriers
		20.5.3	 Basic Property of Pharmaceutical Nanocarriers: Longevity in the Blood
		20.5.4	 Nanoparticle Vehicles in Nutrient and Nutraceutical Delivery
	20.6	 Bioavailability Enhancement with Nanoparticles
	20.7	 Future Prospective and Challenges
	20.8	 Conclusion
	References
21: Current Status of Biologically Produced Nanoparticles in Agriculture
	21.1	 Conclusions
	References
22: A Missing Dilemma on Nanoparticle Producer Microorganisms
	22.1	 Introduction
	22.2	 Biological Synthesis of Nanoparticles by Microorganisms
	22.3	 Soil Property and Condition Affecting Nanoparticle Production
	22.4	 Efficiency of Biocontrol Agents Through Nanoparticle Production for Crop Protection
		22.4.1	 Nano-pesticides
		22.4.2	 Nanoparticles in Horticulture
	22.5	 Outlook
		22.5.1	 A Possible Induction of Bacterial and Fungal Resistance by NPs
	22.6	 Conclusion
	References
23: Detection and Degradation of Pesticides Using Nanomaterials
	23.1	 Introduction
		23.1.1	 Biodegradable Pesticides
	23.2	 Insecticides
		23.2.1	 Atrazine
		23.2.2	 Dichlorvos
		23.2.3	 Endosulfan
		23.2.4	 Parathion
		23.2.5	 Chlorpyrifos
		23.2.6	 Pirimicarb
		23.2.7	 Cyhalothrin
		23.2.8	 Carbaryl
	23.3	 Herbicides
		23.3.1	 2,4-Dichlorophenoxyacetic Acid
		23.3.2	 Clopyralid
		23.3.3	 Glyphosate
		23.3.4	 Paraquat
		23.3.5	 Mesotrione
	23.4	 Rodenticides
		23.4.1	 Warfarin
		23.4.2	 Bromadiolone
	23.5	 Bactericides
		23.5.1	 Bismerthiazol
	23.6	 Fungicides
		23.6.1	 Captan
		23.6.2	 Carbendazim
		23.6.3	 Mancozeb
	References
24: Use of Nanomaterials in Food Science
	24.1	 Introduction
	24.2	 Applications of Food Nanotechnology
		24.2.1	 Food Processing
			24.2.1.1	 Nanosensors
			24.2.1.2	 Interactive “Smart” Food Using Encapsulation
				24.2.1.2.1 Association Colloids
				24.2.1.2.2 Nanoemulsions
				24.2.1.2.3 Biopolymeric Nanoparticles
				24.2.1.2.4 Nanolaminates
				24.2.1.2.5 Nanofibers and Nanotubes
			24.2.1.3	 Antimicrobial Properties
			24.2.1.4	 Protection Against Chemical Ingredients
				24.2.1.4.1 Antioxidants
			24.2.1.5	 Enhancement of Physical Properties
				24.2.1.5.1 Color Additives
				24.2.1.5.2 Flavors
				24.2.1.5.3 Anticaking Agents
		24.2.2	 Packaging and Food Safety
			24.2.2.1	 Active Packaging
			24.2.2.2	 Smart/Intelligent Packaging
			24.2.2.3	 Carbon Nanotubes
			24.2.2.4	 Biobased Packaging
				24.2.2.4.1 Starch and Their Derivatives
				24.2.2.4.2 Polylactic Acid (PLA)
				24.2.2.4.3 Polyhydroxybutyrate (PHB)
				24.2.2.4.4 Polycaprolactone (PCL)
		24.2.3	 Types of Nanomaterials in Food
			24.2.3.1	 Inorganic Nanoparticles
				24.2.3.1.1 Silver Nanoparticles
				24.2.3.1.2 Zinc and Zinc Oxide Nanoparticles
				24.2.3.1.3 Titanium Dioxide Nanoparticles
				24.2.3.1.4 Silicon Dioxide Nanoparticles
			24.2.3.2	 Organic Nanoparticles
				24.2.3.2.1 Lipid Nanoparticles
				24.2.3.2.2 Protein Nanoparticles
				24.2.3.2.3 Carbohydrate Nanoparticles
				24.2.3.2.4 Complex Nanoparticles
		24.2.4	 Role in Tracking, Tracing, Nanolithography, and Brand Protection
		24.2.5	 Implication and Safety Concerns
			24.2.5.1	 Size
			24.2.5.2	 Chemical Composition
			24.2.5.3	 Surface Structure
			24.2.5.4	 Solubility
			24.2.5.5	 Routes of Nanoparticle Exposure
	24.3	 Emerging Challenges and Potential Solutions
	References
25: Biogenic Nanomaterials and Their Applications in Agriculture
	25.1	 Introduction
	25.2	 Classification and Types of NPs
		25.2.1	 Carbon-Based NPs
		25.2.2	 Metal NPs
		25.2.3	 Ceramic NPs
		25.2.4	 Semiconductor NPs
		25.2.5	 Polymeric NPs
		25.2.6	 Lipid-Based NPs
	25.3	 Various Approaches in Nanoparticle Synthesis
		25.3.1	 Toxicology of Nanoparticles and Advantage of Biological Nanoparticles
		25.3.2	 Synthesis Mechanism of Nanoparticles
			25.3.2.1	 Top-Down Syntheses
			25.3.2.2	 Bottom-Up Syntheses
		25.3.3	 Biogenic or Green Synthesis Using Plants and Microorganisms
			25.3.3.1	 Plants
			25.3.3.2	 Nanoparticle Synthesis Using Microorganisms
				25.3.3.2.1 Bacteria
				25.3.3.2.2 Fungi
				25.3.3.2.3 Actinomycetes
				25.3.3.2.4 Algae
				25.3.3.2.5 Viruses
	25.4	 Critical Parameters and Stabilization for the Biological Synthesis of Nanoparticles
		25.4.1	 Temperature
		25.4.2	 pH
	25.5	 Characterization of Nanoparticles
		25.5.1	 Morphological Characterizations
		25.5.2	 Structural Characterizations
		25.5.3	 Particle Size and Surface Area Characterization
		25.5.4	 Optical Characterizations
	25.6	 Applications of Nanoparticles in Agriculture
		25.6.1	 Nanomaterials as Nanofertilizers
			25.6.1.1	 Different Types of Nanofertilizers
				25.6.1.1.1 Nitrogen Nanofertilizers
				25.6.1.1.2 Potash Nanofertilizers
				25.6.1.1.3 Zinc Nanofertilizers
				25.6.1.1.4 Nanoporous Zeolites
		25.6.2	 Nanoherbicides
		25.6.3	 Nanopesticides
	25.7	 Environmental Toxicity of Nanoparticles
	25.8	 Conclusion
	References
26: Biosensors and Nanobiosensors in Environmental Applications
	26.1	 Introduction
	26.2	 Biosensors
		26.2.1	 Components of a Biosensor
		26.2.2	 Types of Biosensors
			26.2.2.1	 Enzyme-Based Biosensors
			26.2.2.2	 DNA-Based Biosensors
			26.2.2.3	 Immunosensors
			26.2.2.4	 Whole-Cell-Based Biosensors
			26.2.2.5	 Electrochemical Biosensors
			26.2.2.6	 Optical Biosensors
			26.2.2.7	 Mass Spectrometry Biosensors (Piezoelectric Biosensors)
			26.2.2.8	 Acoustic Biosensors
			26.2.2.9	 Thermal Biosensors
		26.2.3	 Biosensors Environmental Applications
			26.2.3.1	 Biosensors in Agriculture
			26.2.3.2	 Environmental Monitoring
			26.2.3.3	 Microbial Biosensors for Environmental Detection
				26.2.3.3.1 In-site and Online Monitoring
				26.2.3.3.2 Reporter Genes
				26.2.3.3.3 Luminescent Bacteria and Fluorescence Microbial Biosensors
		26.2.4	 Advantages of Biosensors
	26.3	 Nanobiosensor
		26.3.1	 Constituents of Nanobiosensors
		26.3.2	 Types of Nanobiosensors
			26.3.2.1	 Mechanical Nanobiosensors
			26.3.2.2	 Optical Nanobiosensors
			26.3.2.3	 Nanowire Nanobiosensors
			26.3.2.4	 Electronic Nanobiosensors
			26.3.2.5	 Nanoshell Biosensors
		26.3.3	 Environmental Application of Nanobiosensors
			26.3.3.1	 Role of Nanobiosensors in Agriculture
				26.3.3.1.1 As an Agent to Promote Sustainable Agriculture
				26.3.3.1.2 Nanobiosensors for Seed Storage
				26.3.3.1.3 Nanobiosensors for Fungal Plant Pathogen Detection
				26.3.3.1.4 Nanobiosensors for Viral and Bacterial Plant Pathogen Detection
				26.3.3.1.5 Nanobiosensors for Herbicide Detection
				26.3.3.1.6 Nanobiosensors for Pesticide Detection
			26.3.3.2	 Environmental Monitoring
				26.3.3.2.1 Nanobiosensors to Detect Contaminants in Soil
				26.3.3.2.2 Nanobiosensors to Detect Heavy Metals in Soil and Water
				26.3.3.2.3 Nanobiosensors for the Detection of Toxin, Pollution, and Pathogens in Water
	26.4	 Future Perspectives
	References
27: Biogenic Synthesis of Metal Nanoparticles by Plants
	27.1	 Introduction
		27.1.1	 Definition of Nanotechnology and Its Background
		27.1.2	 Type of Nanostructures
		27.1.3	 Nanoparticle Synthesis
			27.1.3.1	 Physical Procedures
			27.1.3.2	 Chemical Methods
			27.1.3.3	 Biological Methods
				27.1.3.3.1 Advantage of Biological Nanoparticles
				27.1.3.3.2 Plant-Mediated Synthesis (Phytosynthesis) of Nanoparticles
	27.2	 Characterization of Nanoparticle
		27.2.1	 UV-VIS Spectroscopy
		27.2.2	 FTIR Spectroscopy
		27.2.3	 Transmission Electron Microscopy (TEM)
		27.2.4	 Scanning Electron Microscopy(SEM)
		27.2.5	 X-Ray Diffraction (XRD)
		27.2.6	 Energy Dispersive X-Ray Spectroscopy (EDS or EDX)
	27.3	 Nanoparticles and Their Applications
	References
Correction to: Application of Nanotechnology in Agricultural Farm Animals
	Correction to: Chapter 1 in: M. Ghorbanpour et al. (eds.), Biogenic Nano-Particles and their Use in Agro-ecosystems, https://doi.org/10.1007/978-981-15-2985-6_1




نظرات کاربران