دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Balamurugan Balusamy, Nandhini Abirami. R, Seifedine Kadry, Amir H. Gandomi سری: ISBN (شابک) : 9781119701828 ناشر: Wiley سال نشر: 2021 تعداد صفحات: 371 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Big Data Concepts Technology and Architecture به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفاهیم فناوری اطلاعات و معماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Contents Acknowledgments About the Author Chapter 1 Introduction to the World of Big Data 1.1 Understanding Big Data 1.2 Evolution of Big Data 1.3 Failure of Traditional Database in Handling Big Data 1.3.1 Data Mining vs. Big Data 1.4 3 Vs of Big Data 1.4.1 Volume 1.4.2 Velocity 1.4.3 Variety 1.5 Sources of Big Data 1.6 Different Types of Data 1.6.1 Structured Data 1.6.2 Unstructured Data 1.6.3 Semi-Structured Data 1.7 Big Data Infrastructure 1.8 Big Data Life Cycle 1.8.1 Big Data Generation 1.8.2 Data Aggregation 1.8.3 Data Preprocessing 1.8.4 Big Data Analytics 1.8.5 Visualizing Big Data 1.9 Big Data Technology 1.9.1 Challenges Faced by Big Data Technology 1.9.2 Heterogeneity and Incompleteness 1.9.3 Volume and Velocity of the Data 1.9.4 Data Storage 1.9.5 Data Privacy 1.10 Big Data Applications 1.11 Big Data Use Cases 1.11.1 Health Care 1.11.2 Telecom 1.11.3 Financial Services Chapter 1 Refresher Conceptual Short Questions with Answers Frequently Asked Interview Questions Chapter 2 Big Data Storage Concepts 2.1 Cluster Computing 2.1.1 Types of Cluster 2.1.2 Cluster Structure 2.2 Distribution Models 2.2.1 Sharding 2.2.2 Data Replication 2.2.3 Sharding and Replication 2.3 Distributed File System 2.4 Relational and Non-Relational Databases 2.4.1 RDBMS Databases 2.4.2 NoSQL Databases 2.4.3 NewSQL Databases 2.5 Scaling Up and Scaling Out Storage Chapter 2 Refresher Conceptual Short Questions with Answers Chapter 3 NoSQL Database 3.1 Introduction to NoSQL 3.2 Why NoSQL 3.3 CAP Theorem 3.4 ACID 3.5 BASE 3.6 Schemaless Databases 3.7 NoSQL (Not Only SQL) 3.7.1 NoSQL vs. RDBMS 3.7.2 Features of NoSQL Databases 3.7.3 Types of NoSQL Technologies 3.7.4 NoSQL Operations 3.8 Migrating from RDBMS to NoSQL Chapter 3 Refresher Conceptual Short Questions with Answers Chapter 4 Processing, Management Concepts, and Cloud Computing 4.1 Data Processing 4.2 Shared Everything Architecture 4.2.1 Symmetric Multiprocessing Architecture 4.2.2 Distributed Shared Memory 4.3 Shared-Nothing Architecture 4.4 Batch Processing 4.5 Real-Time Data Processing 4.6 Parallel Computing 4.7 Distributed Computing 4.8 Big Data Virtualization 4.8.1 Attributes of Virtualization 4.8.2 Big Data Server Virtualization Part II: Managing and Processing Big Data in Cloud Computing 4.9 Introduction 4.10 Cloud Computing Types 4.11 Cloud Services 4.12 Cloud Storage 4.12.1 Architecture of GFS 4.13 Cloud Architecture 4.13.1 Cloud Challenges Chapter 4 Refresher Conceptual Short Questions with Answers Cloud Computing Interview Questions Chapter 5 Driving Big Data with Hadoop Tools and Technologies 5.1 Apache Hadoop 5.1.1 Architecture of Apache Hadoop 5.1.2 Hadoop Ecosystem Components Overview 5.2 Hadoop Storage 5.2.1 HDFS (Hadoop Distributed File System) 5.2.2 Why HDFS? 5.2.3 HDFS Architecture 5.2.4 HDFS Read/Write Operation 5.2.5 Rack Awareness 5.2.6 Features of HDFS 5.3 Hadoop Computation 5.3.1 MapReduce 5.3.2 MapReduce Input Formats 5.3.3 MapReduce Example 5.3.4 MapReduce Processing 5.3.5 MapReduce Algorithm 5.3.6 Limitations of MapReduce 5.4 Hadoop 2.0 5.4.1 Hadoop 1.0 Limitations 5.4.2 Features of Hadoop 2.0 5.4.3 Yet Another Resource Negotiator (YARN) 5.4.4 Core Components of YARN 5.4.5 YARN Scheduler 5.4.6 Failures in YARN 5.5 HBASE 5.5.1 Features of HBase 5.6 Apache Cassandra 5.7 SQOOP 5.8 Flume 5.8.1 Flume Architecture 5.9 Apache Avro 5.10 Apache Pig 5.11 Apache Mahout 5.12 Apache Oozie 5.12.1 Oozie Workflow 5.12.2 Oozie Coordinators 5.12.3 Oozie Bundles 5.13 Apache Hive 5.14 Hive Architecture 5.15 Hadoop Distributions Chapter 5 Refresher Conceptual Short Questions with Answers Frequently Asked Interview Questions Chapter 6 Big Data Analytics 6.1 Terminology of Big Data Analytics 6.1.1 Data Warehouse 6.1.2 Business Intelligence 6.1.3 Analytics 6.2 Big Data Analytics 6.2.1 Descriptive Analytics 6.2.2 Diagnostic Analytics 6.2.3 Predictive Analytics 6.2.4 Prescriptive Analytics 6.3 Data Analytics Life Cycle 6.3.1 Business Case Evaluation and Identification of the Source Data 6.3.2 Data Preparation 6.3.3 Data Extraction and Transformation 6.3.4 Data Analysis and Visualization 6.3.5 Analytics Application 6.4 Big Data Analytics Techniques 6.4.1 Quantitative Analysis 6.4.2 Qualitative Analysis 6.4.3 Statistical Analysis 6.5 Semantic Analysis 6.5.1 Natural Language Processing 6.5.2 Text Analytics 6.5.3 Sentiment Analysis 6.6 Visual analysis 6.7 Big Data Business Intelligence 6.7.1 Online Transaction Processing (OLTP) 6.7.2 Online Analytical Processing (OLAP) 6.7.3 Real-Time Analytics Platform (RTAP) 6.8 Big Data Real-Time Analytics Processing 6.9 Enterprise Data Warehouse Chapter 6 Refresher Conceptual Short Questions with Answers Chapter 7 Big Data Analytics with Machine Learning 7.1 Introduction to Machine Learning 7.2 Machine Learning Use Cases 7.3 Types of Machine Learning 7.3.1 Supervised Machine Learning Algorithm 7.3.2 Support Vector Machines (SVM) 7.3.3 Unsupervised Machine Learning 7.3.4 Clustering Chapter 7 Refresher Conceptual Short Questions with Answers Chapter 8 Mining Data Streams and Frequent Itemset 8.1 Itemset Mining 8.2 Association Rules 8.3 Frequent Itemset Generation 8.4 Itemset Mining Algorithms 8.4.1 Apriori Algorithm 8.4.2 The Eclat Algorithm—Equivalence Class Transformation Algorithm 8.4.3 The FP Growth Algorithm 8.5 Maximal and Closed Frequent Itemset 8.6 Mining Maximal Frequent Itemsets: the GenMax Algorithm 8.7 Mining Closed Frequent Itemsets: the Charm Algorithm 8.8 CHARM Algorithm Implementation 8.9 Data Mining Methods 8.10 Prediction 8.10.1 Classification Techniques 8.11 Important Terms Used in Bayesian Network 8.11.1 Random Variable 8.11.2 Probability Distribution 8.11.3 Joint Probability Distribution 8.11.4 Conditional Probability 8.11.5 Independence 8.11.6 Bayes Rule 8.12 Density Based Clustering Algorithm 8.13 DBSCAN 8.14 Kernel Density Estimation 8.14.1 Artificial Neural Network 8.14.2 The Biological Neural Network 8.15 Mining Data Streams 8.16 Time Series Forecasting Chapter 9 Cluster Analysis 9.1 Clustering 9.2 Distance Measurement Techniques 9.3 Hierarchical Clustering 9.3.1 Application of Hierarchical Methods 9.4 Analysis of Protein Patterns in the Human Cancer-Associated Liver 9.5 Recognition Using Biometrics of Hands 9.5.1 Partitional Clustering 9.5.2 K-Means Algorithm 9.5.3 Kernel K-Means Clustering 9.6 Expectation Maximization Clustering Algorithm 9.7 Representative-Based Clustering 9.8 Methods of Determining the Number of Clusters 9.8.1 Outlier Detection 9.8.2 Types of Outliers 9.8.3 Outlier Detection Techniques 9.8.4 Training Dataset–Based Outlier Detection 9.8.5 Assumption-Based Outlier Detection 9.8.6 Applications of Outlier Detection 9.9 Optimization Algorithm 9.10 Choosing the Number of Clusters 9.11 Bayesian Analysis of Mixtures 9.12 Fuzzy Clustering 9.13 Fuzzy C-Means Clustering Chapter 10 Big Data Visualization 10.1 Big Data Visualization 10.2 Conventional Data Visualization Techniques 10.2.1 Line Chart 10.2.2 Bar Chart 10.2.3 Pie Chart 10.2.4 Scatterplot 10.2.5 Bubble Plot 10.3 Tableau 10.3.1 Connecting to Data 10.3.2 Connecting to Data in the Cloud 10.3.3 Connect to a File 10.3.4 Scatterplot in Tableau 10.3.5 Histogram Using Tableau 10.4 Bar Chart in Tableau 10.5 Line Chart 10.6 Pie Chart 10.7 Bubble Chart 10.8 Box Plot 10.9 Tableau Use Cases 10.9.1 Airlines 10.9.2 Office Supplies 10.9.3 Sports 10.9.4 Science – Earthquake Analysis 10.10 Installing R and Getting Ready 10.10.1 R Basic Commands 10.10.2 Assigning Value to a Variable 10.11 Data Structures in R 10.11.1 Vector 10.11.2 Coercion 10.11.3 Length, Mean, and Median 10.11.4 Matrix 10.11.5 Arrays 10.11.6 Naming the Arrays 10.11.7 Data Frames 10.11.8 Lists 10.12 Importing Data from a File 10.13 Importing Data from a Delimited Text File 10.14 Control Structures in R 10.14.1 If-else 10.14.2 Nested if-Else 10.14.3 For Loops 10.14.4 While Loops 10.14.5 Break 10.15 Basic Graphs in R 10.15.1 Pie Charts 10.15.2 3D – Pie Charts 10.15.3 Bar Charts 10.15.4 Boxplots 10.15.5 Histograms 10.15.6 Line Charts 10.15.7 Scatterplots Index EULA