ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Big Data Concepts Technology and Architecture

دانلود کتاب مفاهیم فناوری اطلاعات و معماری

Big Data Concepts Technology and Architecture

مشخصات کتاب

Big Data Concepts Technology and Architecture

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9781119701828 
ناشر: Wiley 
سال نشر: 2021 
تعداد صفحات: 371 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 50,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Big Data Concepts Technology and Architecture به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مفاهیم فناوری اطلاعات و معماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright Page
Contents
Acknowledgments
About the Author
Chapter 1 Introduction to the World of Big Data
	1.1 Understanding Big Data
	1.2 Evolution of Big Data
	1.3 Failure of Traditional Database in Handling Big Data
		1.3.1 Data Mining vs. Big Data
	1.4 3 Vs of Big Data
		1.4.1 Volume
		1.4.2 Velocity
		1.4.3 Variety
	1.5 Sources of Big Data
	1.6 Different Types of Data
		1.6.1 Structured Data
		1.6.2 Unstructured Data
		1.6.3 Semi-Structured Data
	1.7 Big Data Infrastructure
	1.8 Big Data Life Cycle
		1.8.1 Big Data Generation
		1.8.2 Data Aggregation
		1.8.3 Data Preprocessing
		1.8.4 Big Data Analytics
		1.8.5 Visualizing Big Data
	1.9 Big Data Technology
		1.9.1 Challenges Faced by Big Data Technology
		1.9.2 Heterogeneity and Incompleteness
		1.9.3 Volume and Velocity of the Data
		1.9.4 Data Storage
		1.9.5 Data Privacy
	1.10 Big Data Applications
	1.11 Big Data Use Cases
		1.11.1 Health Care
		1.11.2 Telecom
		1.11.3 Financial Services
	Chapter 1 Refresher
	Conceptual Short Questions with Answers
	Frequently Asked Interview Questions
Chapter 2 Big Data Storage Concepts
	2.1 Cluster Computing
		2.1.1 Types of Cluster
		2.1.2 Cluster Structure
	2.2 Distribution Models
		2.2.1 Sharding
		2.2.2 Data Replication
		2.2.3 Sharding and Replication
	2.3 Distributed File System
	2.4 Relational and Non-Relational Databases
		2.4.1 RDBMS Databases
		2.4.2 NoSQL Databases
		2.4.3 NewSQL Databases
	2.5 Scaling Up and Scaling Out Storage
	Chapter 2 Refresher
	Conceptual Short Questions with Answers
Chapter 3 NoSQL Database
	3.1 Introduction to NoSQL
	3.2 Why NoSQL
	3.3 CAP Theorem
	3.4 ACID
	3.5 BASE
	3.6 Schemaless Databases
	3.7 NoSQL (Not Only SQL)
		3.7.1 NoSQL vs. RDBMS
		3.7.2 Features of NoSQL Databases
		3.7.3 Types of NoSQL Technologies
		3.7.4 NoSQL Operations
	3.8 Migrating from RDBMS to NoSQL
	Chapter 3 Refresher
	Conceptual Short Questions with Answers
Chapter 4 Processing, Management Concepts, and Cloud Computing
	4.1 Data Processing
	4.2 Shared Everything Architecture
		4.2.1 Symmetric Multiprocessing Architecture
		4.2.2 Distributed Shared Memory
	4.3 Shared-Nothing Architecture
	4.4 Batch Processing
	4.5 Real-Time Data Processing
	4.6 Parallel Computing
	4.7 Distributed Computing
	4.8 Big Data Virtualization
		4.8.1 Attributes of Virtualization
		4.8.2 Big Data Server Virtualization
	Part II: Managing and Processing Big Data in Cloud Computing
	4.9 Introduction
	4.10 Cloud Computing Types
	4.11 Cloud Services
	4.12 Cloud Storage
		4.12.1 Architecture of GFS
	4.13 Cloud Architecture
		4.13.1 Cloud Challenges
	Chapter 4 Refresher
	Conceptual Short Questions with Answers
	Cloud Computing Interview Questions
Chapter 5 Driving Big Data with Hadoop Tools and Technologies
	5.1 Apache Hadoop
		5.1.1 Architecture of Apache Hadoop
		5.1.2 Hadoop Ecosystem Components Overview
	5.2 Hadoop Storage
		5.2.1 HDFS (Hadoop Distributed File System)
		5.2.2 Why HDFS?
		5.2.3 HDFS Architecture
		5.2.4 HDFS Read/Write Operation
		5.2.5 Rack Awareness
		5.2.6 Features of HDFS
	5.3 Hadoop Computation
		5.3.1 MapReduce
		5.3.2 MapReduce Input Formats
		5.3.3 MapReduce Example
		5.3.4 MapReduce Processing
		5.3.5 MapReduce Algorithm
		5.3.6 Limitations of MapReduce
	5.4 Hadoop 2.0
		5.4.1 Hadoop 1.0 Limitations
		5.4.2 Features of Hadoop 2.0
		5.4.3 Yet Another Resource Negotiator (YARN)
		5.4.4 Core Components of YARN
		5.4.5 YARN Scheduler
		5.4.6 Failures in YARN
	5.5 HBASE
		5.5.1 Features of HBase
	5.6 Apache Cassandra
	5.7 SQOOP
	5.8 Flume
		5.8.1 Flume Architecture
	5.9 Apache Avro
	5.10 Apache Pig
	5.11 Apache Mahout
	5.12 Apache Oozie
		5.12.1 Oozie Workflow
		5.12.2 Oozie Coordinators
		5.12.3 Oozie Bundles
	5.13 Apache Hive
	5.14 Hive Architecture
	5.15 Hadoop Distributions
	Chapter 5 Refresher
	Conceptual Short Questions with Answers
	Frequently Asked Interview Questions
Chapter 6 Big Data Analytics
	6.1 Terminology of Big Data Analytics
		6.1.1 Data Warehouse
		6.1.2 Business Intelligence
		6.1.3 Analytics
	6.2 Big Data Analytics
		6.2.1 Descriptive Analytics
		6.2.2 Diagnostic Analytics
		6.2.3 Predictive Analytics
		6.2.4 Prescriptive Analytics
	6.3 Data Analytics Life Cycle
		6.3.1 Business Case Evaluation and Identification of the Source Data
		6.3.2 Data Preparation
		6.3.3 Data Extraction and Transformation
		6.3.4 Data Analysis and Visualization
		6.3.5 Analytics Application
	6.4 Big Data Analytics Techniques
		6.4.1 Quantitative Analysis
		6.4.2 Qualitative Analysis
		6.4.3 Statistical Analysis
	6.5 Semantic Analysis
		6.5.1 Natural Language Processing
		6.5.2 Text Analytics
		6.5.3 Sentiment Analysis
	6.6 Visual analysis
	6.7 Big Data Business Intelligence
		6.7.1 Online Transaction Processing (OLTP)
		6.7.2 Online Analytical Processing (OLAP)
		6.7.3 Real-Time Analytics Platform (RTAP)
	6.8 Big Data Real-Time Analytics Processing
	6.9 Enterprise Data Warehouse
	Chapter 6 Refresher
	Conceptual Short Questions with Answers
Chapter 7 Big Data Analytics with Machine Learning
	7.1 Introduction to Machine Learning
	7.2 Machine Learning Use Cases
	7.3 Types of Machine Learning
		7.3.1 Supervised Machine Learning Algorithm
		7.3.2 Support Vector Machines (SVM)
		7.3.3 Unsupervised Machine Learning
		7.3.4 Clustering
	Chapter 7 Refresher
	Conceptual Short Questions with Answers
Chapter 8 Mining Data Streams and Frequent Itemset
	8.1 Itemset Mining
	8.2 Association Rules
	8.3 Frequent Itemset Generation
	8.4 Itemset Mining Algorithms
		8.4.1 Apriori Algorithm
		8.4.2 The Eclat Algorithm—Equivalence Class Transformation Algorithm
		8.4.3 The FP Growth Algorithm
	8.5 Maximal and Closed Frequent Itemset
	8.6 Mining Maximal Frequent Itemsets: the GenMax Algorithm
	8.7 Mining Closed Frequent Itemsets: the Charm Algorithm
	8.8 CHARM Algorithm Implementation
	8.9 Data Mining Methods
	8.10 Prediction
		8.10.1 Classification Techniques
	8.11 Important Terms Used in Bayesian Network
		8.11.1 Random Variable
		8.11.2 Probability Distribution
		8.11.3 Joint Probability Distribution
		8.11.4 Conditional Probability
		8.11.5 Independence
		8.11.6 Bayes Rule
	8.12 Density Based Clustering Algorithm
	8.13 DBSCAN
	8.14 Kernel Density Estimation
		8.14.1 Artificial Neural Network
		8.14.2 The Biological Neural Network
	8.15 Mining Data Streams
	8.16 Time Series Forecasting
Chapter 9 Cluster Analysis
	9.1 Clustering
	9.2 Distance Measurement Techniques
	9.3 Hierarchical Clustering
		9.3.1 Application of Hierarchical Methods
	9.4 Analysis of Protein Patterns in the Human Cancer-Associated Liver
	9.5 Recognition Using Biometrics of Hands
		9.5.1 Partitional Clustering
		9.5.2 K-Means Algorithm
		9.5.3 Kernel K-Means Clustering
	9.6 Expectation Maximization Clustering Algorithm
	9.7 Representative-Based Clustering
	9.8 Methods of Determining the Number of Clusters
		9.8.1 Outlier Detection
		9.8.2 Types of Outliers
		9.8.3 Outlier Detection Techniques
		9.8.4 Training Dataset–Based Outlier Detection
		9.8.5 Assumption-Based Outlier Detection
		9.8.6 Applications of Outlier Detection
	9.9 Optimization Algorithm
	9.10 Choosing the Number of Clusters
	9.11 Bayesian Analysis of Mixtures
	9.12 Fuzzy Clustering
	9.13 Fuzzy C-Means Clustering
Chapter 10 Big Data Visualization
	10.1 Big Data Visualization
	10.2 Conventional Data Visualization Techniques
		10.2.1 Line Chart
		10.2.2 Bar Chart
		10.2.3 Pie Chart
		10.2.4 Scatterplot
		10.2.5 Bubble Plot
	10.3 Tableau
		10.3.1 Connecting to Data
		10.3.2 Connecting to Data in the Cloud
		10.3.3 Connect to a File
		10.3.4 Scatterplot in Tableau
		10.3.5 Histogram Using Tableau
	10.4 Bar Chart in Tableau
	10.5 Line Chart
	10.6 Pie Chart
	10.7 Bubble Chart
	10.8 Box Plot
	10.9 Tableau Use Cases
		10.9.1 Airlines
		10.9.2 Office Supplies
		10.9.3 Sports
		10.9.4 Science – Earthquake Analysis
	10.10 Installing R and Getting Ready
		10.10.1 R Basic Commands
		10.10.2 Assigning Value to a Variable
	10.11 Data Structures in R
		10.11.1 Vector
		10.11.2 Coercion
		10.11.3 Length, Mean, and Median
		10.11.4 Matrix
		10.11.5 Arrays
		10.11.6 Naming the Arrays
		10.11.7 Data Frames
		10.11.8 Lists
	10.12 Importing Data from a File
	10.13 Importing Data from a Delimited Text File
	10.14 Control Structures in R
		10.14.1 If-else
		10.14.2 Nested if-Else
		10.14.3 For Loops
		10.14.4 While Loops
		10.14.5 Break
	10.15 Basic Graphs in R
		10.15.1 Pie Charts
		10.15.2 3D – Pie Charts
		10.15.3 Bar Charts
		10.15.4 Boxplots
		10.15.5 Histograms
		10.15.6 Line Charts
		10.15.7 Scatterplots
Index
EULA




نظرات کاربران