دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آمار ریاضی ویرایش: 1 نویسندگان: Ioannis Ntzoufras سری: ISBN (شابک) : 047014114X, 9780470141144 ناشر: Wiley سال نشر: 2009 تعداد صفحات: 506 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 مگابایت
کلمات کلیدی مربوط به کتاب مدلسازی بیزی با استفاده از WinBUGS: ریاضی و آماری، نرم افزار، کامپیوتر و فناوری، احتمال و آمار، کاربردی، ریاضیات، علوم و ریاضی، علوم کامپیوتر، الگوریتم ها، هوش مصنوعی، ذخیره سازی و طراحی پایگاه داده، گرافیک و تجسم، شبکه، طراحی سیستم های شی گرا، نرم افزارهای شی گرا، زبان های برنامه نویسی، طراحی و مهندسی نرم افزار، کتاب های درسی جدید، مستعمل و اجاره، بوتیک تخصصی، آمار، ریاضیات، علوم و ریاضیات، کتاب های درسی جدید، مستعمل و اجاره ای، بوتیک تخصصی
در صورت تبدیل فایل کتاب Bayesian Modeling Using WinBUGS به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی بیزی با استفاده از WinBUGS نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدلسازی بیزی با استفاده از WinBUGS مقدمه ای آسان برای استفاده از تکنیک های برنامه نویسی WinBUGS در انواع مختلف فراهم می کند. تنظیمات مدلسازی بیزی نویسنده یک درمان در دسترس از موضوع ارائه میکند و به خوانندگان مقدمهای ساده با اصول مدلسازی بیزی همراه با راهنمایی دقیق در مورد اجرای عملی اصول کلیدی ارائه میکند.
کتاب با مقدمهای اساسی برای استنتاج بیزی و استنتاج بیزی آغاز میشود. نرم افزار WinBUGS و در ادامه به موضوعات کلیدی می پردازد، از جمله:
الگوریتم های زنجیره مارکوف مونت کارلو در استنتاج بیزی
خطی تعمیم یافته مدلها
مدلهای سلسله مراتبی بیزی
توزیع پیشبینیکننده و بررسی مدل
مدل بیزی و ارزیابی متغیر
یادداشتهای محاسباتی و عکسبرداری از صفحه نمایش، استفاده از نرمافزار WinBUGS و R را برای اعمال تکنیکهای مورد بحث نشان میدهند. تمرینهای پایان هر فصل به خوانندگان اجازه میدهد تا درک خود را از مفاهیم ارائهشده آزمایش کنند و تمام مجموعههای داده و کد در وبسایت مربوط به کتاب موجود است.
فقط نیاز به دانش کاری درباره تئوری احتمال و آمار، مدلسازی بیزی با استفاده از WinBUGS به عنوان یک کتاب عالی برای دوره های آمار بیزی در سطوح فوق لیسانس و فوق لیسانس عمل می کند. همچنین یک مرجع ارزشمند برای محققان و متخصصان در زمینههای آمار، علم اکچوئری، پزشکی و علوم اجتماعی است که از WinBUGS در کارهای روزمره خود استفاده میکنند.
Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles.
The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including:
Markov Chain Monte Carlo algorithms in Bayesian inference
Generalized linear models
Bayesian hierarchical models
Predictive distribution and model checking
Bayesian model and variable evaluation
Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site.
Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.
CONTENTS ... 7 1 Introduction to Bayesian Inference ... 7 2 Markov Chain Monte Carlo Algorithms in Bayesian Inference ... 8 3 WinBUGS Software: Introduction, Setup, and Basic Analysis ... 8 4 Win BUGS Software: Illustration, Results, and Further Analysis ... 8 PREFACE ... 16 ACKNOWLEDGMENTS ... 18 ACRONYMS ... 19 Chapter 1 INTRODUCTION TO BAYESIAN INFERENCE ... 22 1.1 INTRODUCTION: BAYESIAN MODELING IN THE 21ST CENTURY ... 22 1.2 DEFINITION OF STATISTICAL MODELS ... 24 1.3 BAYES THEOREM ... 24 1.4 MODEL-BASED BAYESIAN INFERENCE ... 25 1.5 INFERENCE USING CONJUGATE PRIOR DISTRIBUTIONS ... 28 1.5.1 Inference for the Poisson rate of count data ... 28 1.5.2 Inference for the success probability of binomial data ... 29 1.5.3 Inference for the mean of normal data with known variance ... 30 1.5.4 Inference for the mean and variance of normal data ... 32 1.5.5 Inference for normal regression models ... 33 1.5.6 Other conjugate prior distributions ... 35 1.5.7 Illustrative examples ... 35 1.6 NONCONJUGATE ANALYSIS ... 45 Problems ... 48 Chapter 2 MARKOV CHAIN MONTE CARLO ALGORITHMS IN BAYESIAN INFERENCE ... 51 2.1 SIMULATION, MONTE CARLO INTEGRATION, AND THEIR IMPLEMENTATION IN BAYESIAN INFERENCE ... 51 2.2 MARKOV CHAIN MONTE CARLO METHODS ... 55 2.2.1 The algorithm ... 56 2.2.2 Terminology and implementation details ... 57 2.2.2.1 Definitions and initial terminology ... 57 2.2.2.2 Describing the target distribution using MCMC output. ... 58 2.2.2.3 Monte Carlo error ... 59 2.2.2.4 Convergence of the algorithm ... 61 2.3 POPULAR MCMC ALGORITHMS ... 62 2.3.1 The Metropolis-Hastings algorithm ... 62 2.3.1.1 Random-walk Metropolis ... 63 2.3.1.2 The independence sampler. ... 64 2.3.2 Componentwise Metropolis-Hastings ... 65 2.3.2.1 Simple examples ... 66 2.3.3 The Gibbs sampler ... 91 2.3.3.1 A simple example using the Gibbs sampler ... 92 2.3.4 Metropolis within Gibbs ... 96 2.3.5 The slice Gibbs sampler ... 96 2.3.6 A simple example using the slice sampler ... 97 2.4 SUMMARY AND CLOSING REMARKS ... 101 Problems ... 101 Chapter 3 WinBUGS SOFTWARE: INTRODUCTION,SETUP, AND BASIC ANALYSIS ... 103 3.1 INTRODUCTION AND HISTORICAL BACKGROUND ... 103 3.2 THE WinBUGS ENVIRONMENT ... 104 3.2.1 Downloading and installing WinBUGS ... 104 3.2.2 A short description of the menus ... 105 3.3 PRELIMINARIES ON USING WinBUGS ... 108 3.3.1 Code structure and type of parameters/nodes ... 108 3.3.2 Scalar, vector, matrix, and array nodes ... 109 3.4 BUILDING BAYESIAN MODELS IN WinBUGS ... 113 3.4.1 Function description ... 113 3.4.2 Using the for syntax and array, matrix,and vector calculations ... 117 3.4.3 Use of parentheses, brackets and curly braces in WinBUGS ... 118 3.4.4 Differences between WinBUGS and R/Splus syntax ... 118 3.4.5 Model specification in WinBUGS ... 119 3.4.6 Data and initial value specification ... 120 3.4.6.1 Rectangular data format ... 120 3.4.6.2 List data format ... 121 3.4.6.3 Importing data from R/Splus ... 122 3.4.6.4 A simple example of data specification. ... 124 3.4.6.5 A simple example using arrays ... 125 3.4.6.6 Mixed and multiple data definition ... 125 3.4.6.7 Initial values ... 127 3.4.6.8 Other details. ... 127 3.4.7 An example of a complete model specification ... 127 3.4.8 Data transformations ... 128 3.5 COMPILING THE MODEL AND SIMULATING VALUES ... 128 3.6 BASIC OUTPUT ANALYSIS USING THE SAMPLE MONITOR TOOL ... 137 3.7 SUMMARIZING THE PROCEDURE ... 140 3.8 CHAPTER SUMMARY AND CONCLUDING COMMENTS ... 141 Problems ... 141 Chapter 4 Win BUGS SOFTWARE: ILLUSTRATION,RESULTS,AND FURTHER ANALYSIS ... 144 4.1 A COMPLETE EXAMPLE OF RUNNING MCMC IN WinBUGS FOR A SIMPLE MODEL ... 144 4.1.1 The model ... 144 4.1.2 Data and initial values ... 146 4.1.3 Compiling and running the model ... 146 4.1.4 MCMC output analysis and results ... 148 4.1.4.1 Checking convergence ... 148 4.1.4.2 Calculation of posterior summaries ... 150 4.2 FURTHER OUTPUT ANALYSIS USING THE INFERENCE MENU ... 151 4.2.1 Comparison of nodes ... 152 4.2.2 Calculation of correlations ... 155 4.2.3 Using the summary tool ... 156 4.2.4 Evaluation and ranking of individuals ... 157 4.2.5 Calculation of deviance information criterion ... 159 4.3 MULTIPLE CHAINS ... 160 4.3.1 Generation of multiple chains ... 160 4.3.2 Output analysis ... 161 4.3.3 The Gelman-Rubin convergence diagnostic ... 162 4.4 CHANGING THE PROPERTIES OF A FIGURE ... 164 4.4.1 General graphical options ... 164 4.4.2 Special graphical options ... 164 4.5 OTHER TOOLS AND MENUS ... 167 4.5.1 The node info tool ... 167 4.5.2 Monitoring the acceptance rate of the Metropolis-Hastings algorithm ... 167 4.5.3 Saving the current state of the chain ... 168 4.5.4 Setting the starting seed number ... 168 4.5.5 Running the model as a script ... 168 4.6 SUMMARY AND CONCLUDING REMARKS ... 168 Problems ... 169 Chapter 5 INTRODUCTION TO BAYESIAN MODELS: NORMAL MODELS ... 170 5.1 GENERAL MODELING PRINCIPLES ... 170 5.2 MODEL SPECIFICATION IN NORMAL REGRESSION MODELS ... 171 5.2.1 Specifying the likelihood ... 172 5.2.2 Specifying a simple independent prior distribution ... 173 5.2.3 Interpretation of the regression coeff icients ... 173 5.2.4 A regression example using WinBUGS ... 176 5.3 USING VECTORS AND MULTIVARIATE PRIORS IN NORMAL REGRESSION MODELS ... 180 5.3.1 Defining the model using matrices ... 180 5.3.2 Prior distributions for normal regression models ... 181 5.3.3 Multivariate normal priors in WinBUGS ... 182 5.3.4 Continuation of Example 5.1 ... 183 5.4 ANALYSIS OF VARIANCE MODELS ... 186 5.4.1 The one-way ANOVA model ... 186 5.4.2 Parametrization and parameter interpretation ... 187 5.4.2.1 Corner constraints ... 187 5.4.2.2 Sum-to-zero constraints. ... 188 5.4.3 One-way ANOVA model in WinBUGS ... 188 5.4.4 A one-way ANOVA example using WinBUGS ... 190 5.4.5 Two-way ANOVA models ... 192 5.4.5.1 The main effects model. ... 192 5.4.5.2 Parametrization and parameter interpretation ... 193 5.4.5.3 The two-way interaction model. ... 193 5.4.5.4 Data in tabular format (equal observations per cell). ... 195 5.4.5.5 A two-way ANOVA example. ... 197 5.4.6 Multifactor analysis of variance ... 203 Problems ... 203 Chapter 6 INCORPORATING CATEGORICAL VARIABLES IN NORMAL MODELS AND FURTHER MODELING ISSUES ... 207 6.1 ANALYSIS OF VARIANCE MODELS USING DUMMY VARIABLES ... 209 6.2 ANALYSIS OF COVARIANCE MODELS ... 213 6.2.1 Models using one quantitative variable and one qualitative variable ... 215 6.2.2 The parallel lines model ... 215 6.2.3 The separate lines model ... 219 6.3 A BIOASSAY EXAMPLE ... 221 6.3.1 Parallel lines analysis ... 222 6.3.2 Slope ratio analysis: Models with common intercept and different slope ... 230 6.3.3 Comparison of the two approaches ... 235 6.4 FURTHER MODELING ISSUES ... 236 6.4.1 Extending the simple ANCOVA model ... 236 6.4.2 Using binary indicators to specify models in multiple regression ... 237 6.4.3 Selection of variables using the deviance information criterion (DIC) ... 237 6.4.3.1 A stepwise method for DIC based variable selection in WinBUGS ... 238 6.5 CLOSING REMARKS ... 244 Problems ... 244 Chapter 7 INTRODUCTION TO GENERALIZED LINEAR MODELS: BINOMIAL AND POISSON DATA ... 246 7.1 INTRODUCTION ... 246 7.1.1 The exponential family ... 247 7.1.2 Common distributions as members of the exponential family ... 248 7.1.3 Link functions ... 251 7.1.3.1 Common link functions ... 251 7.1.3.2 More complicated link functions for binomial data. ... 252 7.1.4 Common generalized linear models ... 253 7.1.5 Interpretation of GLM coefficients ... 255 7.2 PRIOR DISTRIBUTIONS ... 256 7.3 POSTERIOR INFERENCE ... 258 7.3.1 The posterior distribution of a generalized linear model ... 258 7.3.2 GLM specification in WinBUGS ... 259 7.4 POISSON REGRESSION MODELS ... 259 7.4.1 Interpretation of Poisson log-linear parameters ... 259 7.4.2 A simple Poisson regression example ... 262 7.4.2.1 Model specification in WinBUGS ... 262 7.4.2.2 Results ... 263 7.4.2.3 Interpretation of the model parameters. ... 263 7.4.2.4 Estimating specific profiles ... 264 7.4.2.5 Selection of variables using DIC ... 265 7.4.3 A Poisson regression model for modeling football data ... 266 7.4.3.1 Background information and the model ... 266 7.4.3.2 Model specification in WinBUGS ... 267 7.4.3.3 Results. ... 267 7.4.3.4 Prediction of future games ... 268 7.4.3.5 Regeneration of the full league ... 270 7.5 BINOMIAL RESPONSE MODELS ... 272 7.5.1 Interpretation of model parameters in binomial response models ... 274 7.5.1.1 Odds and odds ratios. ... 274 7.5.1.2 Logistic regression parameters and odds ratios ... 276 7.5.1.3 Parameter interpretation in probit models. ... 276 7.5.1.4 Relationship between log it and probit parameters. ... 278 7.5.1.5 Parameter interpretation in log-log and clog-log models. ... 279 7.5.2 A simple example ... 280 7.5.2.1 Model specification in WinBUGS. ... 280 7.5.2.2 Results and parameter interpretation. ... 284 7.6 MODELS FOR CONTINGENCY TABLES ... 286 Problems ... 287 Chapter 8 MODELS FOR POSITIVE CONTINUOUS DATA, COUNT DATA,AND OTHER GLM-BASED EXTENSIONS ... 292 8.1 MODELS WITH NONSTANDARD DISTRIBUTIONS ... 292 8.1.1 Specification of arbitrary likelihood using the zeros-ones trick ... 293 8.1.2 The inverse Gaussian model ... 294 8.2 MODELS FOR POSITIVE CONTINUOUS RESPONSE VARIABLES ... 296 8.2.1 The gamma model ... 296 8.2.2 Other models ... 297 8.2.3 An example ... 298 8.3 ADDITIONAL MODELS FOR COUNT DATA ... 299 8.3.1 The negative binomial model ... 300 8.3.2 The generalized Poisson model ... 303 8.3.3 Zero inflated models ... 305 8.3.4 The bivariate Poisson model ... 308 8.3.5 The Poisson difference model ... 310 8.4 FURTHER GLM·BASED MODELS AND EXTENSIONS ... 313 8.4.1 Survival analysis models ... 314 8.4.2 Multinomial models ... 315 8.4.3 Additional models and further reading ... 317 Problems ... 318 Chapter 9 BAYESIAN HIERARCHICAL MODELS ... 322 9.1 INTRODUCTION ... 322 9.1.1 A simple motivating example ... 323 9.1.2 Why use a hierarchical model? ... 324 9.1.3 Other advantages and characteristics ... 325 9.2 SOME SIMPLE EXAMPLES ... 325 9.2.1 Repeated measures data ... 325 9.2.1.1 Model formulation. ... 325 9.2.1.2 Win BUGS code. ... 327 9.2.1.3 Results. ... 327 9.2.1.4 Handling missing data. ... 327 9.2.2 Introducing random effects in performance parameters ... 330 9.2.2.1 State space model. ... 330 9.2.3 Poisson mixture models for count data ... 332 9.2.3.1 The Poisson-gamma model. ... 332 9.2.3.2 The Poisson-log-normal model. ... 333 9.2.4 The use of hierarchical models in meta-analysis ... 335 9.3 THE GENERALIZED LINEAR MIXED MODEL FORMULATION ... 337 9.3.1 A hierarchical normal model: A simple crossover trial ... 338 9.3.2 Logit GLMM for correlated binary responses ... 342 9.3.2.1 The logit model in 2x2 tables of dependent binary data. ... 343 9.3.3 Poisson log-linear GLMMs for correlated count data ... 350 9.4 DISCUSSION, CLOSING REMARKS,AND FURTHER READING ... 355 Problems ... 357 Chapter 10 THE PREDICTIVE DISTRIBUTION AND MODEL CHECKING ... 358 10.1 INTRODUCTION ... 358 10.1.1 Prediction within Bayesian framework ... 358 10.1.2 Using posterior predictive densities for model evaluation and checking ... 359 10.1.3 Cross-validation predictive densities ... 361 10.2 ESTIMATING THE PREDICTIVE DISTRIBUTION FOR FUTURE OR MISSING OBSERVATIONS USING MCMC ... 361 10.2.1 A simple example: Estimating missing observations ... 362 10.2.2 An example of Bayesian prediction using a simple model ... 364 10.2.2.1 Model formulation. ... 366 10.3 USING THE PREDICTIVE DISTRIBUTION FOR MODEL CHECKING ... 371 10.3.1 Comparison of actual and predictive frequencies for discrete data ... 371 10.3.2 Comparison of cumulative frequencies for predictive and actual values for continuous data ... 374 10.3.3 Comparison of ordered predictive and actual values for continuous data ... 375 10.3.4 Estimation of the posterior predictive ordinate ... 376 10.3.5 Checking individual observations using residuals ... 379 10.3.6 Checking structural assumptions of the model ... 382 10.3.7 Checking the goodness-of-fit of a model ... 385 10.4 USING CROSS-VALIDATION PREDICTIVE DENSITIES FOR MODEL CHECKING, EVALUATION, AND COMPARISON ... 392 10.4.1 Estimating the conditional predictive ordinate ... 392 10.4.2 Generating values from the leave-one-out cross-validatory predictive distributions ... 394 10.5 ILLUSTRATION OF A COMPLETE PREDICTIVE ANALYSIS: NORMAL REGRESSION MODELS ... 395 10.5.1 Checking structural assumptions of the model ... 395 10.5.2 Detailed checks based on residual analysis ... 396 10.5.3 Overall goodness-of-fit of the model ... 397 10.5.4 Implementation using WinBUGS ... 397 10.5.5 An Illustrative example ... 400 10.5.6 Summary of the model checking procedure ... 403 10.6 DISCUSSION ... 404 Problems ... 405 Chapter 11 BAYESIAN MODEL AND VARIABLE EVALUATION ... 406 11.1 PRIOR PREDICTIVE DISTRIBUTIONS AS MEASURES OF MODEL COMPARISON: POSTERIOR MODEL ODDS AND BAYES FACTORS ... 406 11.2 SENSITIVITY OF THE POSTERIOR MODEL PROBABILITIES: THE LINDLEY-BARTLETT PARADOX ... 408 11.3 COMPUTATION OF THE MARGINAL LIKELIHOOD ... 409 11.3.1 Approximations based on the normal distribution ... 409 11.3.2 Sampling from the prior: A naive Monte Carlo estimator ... 409 11.3.3 Sampling from the posterior: The harmonic mean estimator ... 410 11.3.4 Importance sampling estimators ... 411 11.3.5 Bridge sampling estimators ... 411 11.3.6 Chib's marginal likelihood estimator ... 412 11.3.7 Additional details and further reading ... 414 11.4 COMPUTATION OF THE MARGINAL LIKELIHOOD USING WinBUGS ... 414 11.4.1 A beta-binomial example ... 416 11.4.2 A normal regression example with conjugate normal-inverse gamma prior ... 420 11.5 BAYESIAN VARIABLE SELECTION USING GIBBS-BASED METHODS ... 422 11.5.1 Prior distributions for variable selection in GLM ... 423 11.5.2 Gibbs variable selection ... 426 11.5.3 Other Gibbs-based methods for variable selection ... 427 11.6 POSTERIOR INFERENCE USING THE OUTPUT OF BAYESIAN VARIABLE SELECTION SAMPLERS ... 429 11.7 IMPLEMENTATION OF GIBBS VARIABLE SELECTION IN WinBUGS USING AN ILLUSTRATIVE EXAMPLE ... 431 11.8 THE CARLIN-CHIB METHOD ... 436 11.9 REVERSIBLE JUMP MCMC(RJMCMC) ... 437 11.10 USING POSTERIOR PREDICTIVE DENSITIES FOR MODEL EVALUATION ... 438 11.10.1 Estimation from an MCMC output ... 440 11.10.2 A simple example in WinBUGS ... 441 11.11 INFORMATION CRITERIA ... 441 11.11.1 The Bayes information criterion (BIC) ... 442 11.11.2 The Akaike information criterion (AIC) ... 443 11.11.3 Other criteria ... 444 11.11.4 Calculation of penalized deviance measures from the MCMC output ... 445 11.11.5 Implementation in WinBUGS ... 445 11.11.6 A simple example in WinBUGS ... 446 11.12 DISCUSSION AND FURTHER READING ... 449 Problems ... 449 APPENDIX A MODEL SPECIFICATION VIA DIRECTED ACYCLIC GRAPHS: THE DOODLE MENU ... 451 A.1 INTRODUCTION: STARTING WITH DOODLE ... 451 A.2 NODES ... 452 A.3 EDGES ... 454 A.4 PANELS ... 454 A.5 A SIMPLE EXAMPLE ... 455 APPENDIX B THE BATCH MODE: RUNNING A MODEL IN THE BACKGROUND USING SCRIPTS ... 458 B.1 INTRODUCTION ... 458 B.2 BASIC COMMANDS:COMPILING AND RUNNING THE MODEL ... 459 APPENDIX C CHECKING CONVERGENCE USING CODA/BOA ... 461 C.1 INTRODUCTION ... 461 C.2 A SHORT HISTORICAL REVIEW ... 462 C.3 DIAGNOSTICS IMPLEMENTED BY CODA/BOA ... 462 C.3.1 The Geweke diagnostic ... 462 C.3.2 The Gelman-Rubin diagnostic ... 463 C.3.3 The Raftery-Lewis diagnostic ... 463 C.3.4 The Heidelberger-Welch diagnostic ... 463 C.3.5 Final remarks ... 464 C.4 A FIRST LOOK AT CODA/BOA ... 464 C.4.1 CODA ... 464 C.4.2 BOA ... 465 C.5 A SIMPLE EXAMPLE ... 467 C.5.1 Illustration in CODA ... 467 C.5.2 Illustration in BOA ... 471 APPENDIX D NOTATION SUMMARY ... 475 REFERENCES ... 482 INDEX ... 498