ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Basic Electrical Engineering : for BPUT Subject Code BE2102

دانلود کتاب مهندسی برق پایه: برای BPUT کد موضوع BE2102

Basic Electrical Engineering : for BPUT Subject Code BE2102

مشخصات کتاب

Basic Electrical Engineering : for BPUT Subject Code BE2102

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9788131763261, 9788131776254 
ناشر: Pearson Education 
سال نشر: 2011 
تعداد صفحات: [649] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 Mb 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Basic Electrical Engineering : for BPUT Subject Code BE2102 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی برق پایه: برای BPUT کد موضوع BE2102 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
Preface
Syllabus
Roadmap to the Syllabus
About the Author
Chapter 1: Fundamentals of Electric Circuits
	1.1 Introduction
	1.2 Electric Charge
	1.3 Conductors, Insulators, and Semiconductors
	1.4 Electric Field
	1.5 Electric Current, Resistance, Potential, and Potential Difference
		1.5.1 Electric Current
		1.5.2 Magnetic Field
		1.5.3 Resistance
		1.5.4 Potential and Potential Difference
		1.5.5 Electric Circuit
	1.6 Ohm’s Law
	1.7 Resistance and Effect of Temperature on Resistance
	1.8 Electric Power
	1.9 Sign Conventions
	1.10 Circuit Elements and their Characteristics
		1.10.1 Active Circuit Elements
		1.10.2 Passive Circuit Elements
	1.11 Resistors
	1.12 Inductors
		1.12.1 Self-inductance
		1.12.2 Mutual Inductance
		1.12.3 Inductance of Coils Connected in Series Having a Common Core
		1.12.4 How an Inductor Stores Energy
	1.13 Capacitors
		1.13.1 Capacitance of a Parallel Plate Capacitor
		1.13.2 How a Capacitor Stores Energy
		1.13.3 Capacitance and role of Dielectric Strength of the Material
		1.13.4 Types of Capacitors
	1.14 Voltage and Current Sources
		1.14.1 Voltage Source
		1.14.2 Current Source
		1.14.3 Practical Voltage and Current Sources
		1.14.4 Source Transformation
	1.15 Measuring Devices or Instruments
		1.15.1 Classification of Measuring Instruments
		1.15.2 Active and Passive Instruments
		1.15.3 Analog and Digital instruments
		1.15.4 Indicating, Recording, and Integrating instruments
		1.15.5 Deflection and Null Type Instruments
		1.15.6 Measurement Error
	1.16 Indicating Type Instruments
		1.16.1 Permanent Magnet Moving Coil (PMMC) Instruments
		1.16.2 Extension of Range of Measuring Instruments Using Shunts and Multipliers
		1.16.3 Moving Iron Instruments
		1.16.4 Dynamometer type Moving Coil Instruments
		1.16.5 Multimeter and Measurement of Resistance
	1.17 Kirchhoff’s Laws
		1.17.1 Kirchhoff’s Current Law
		1.17.2 Kirchhoff’s Voltage Law
	Review Questions
	Objective Type Questions
Chapter 2: Resistive Network Analysis
	2.1 Introduction
	2.2 Series Circuit
	2.3 Parallel Circuit
	2.4 Series-Parallel Circuits
	2.5 Voltage and Current Divider Rules
		2.5.1 Voltage Divider Rule
		2.5.2 Current Divider Rule
	2.6 Method of Evaluating Determinant
	2.7 Application of Kirchhoff’s Laws
	2.8 Maxwell’s Mesh Current Method of Circuit Analysis
	2.9 Node Voltage Method of Circuit Analysis
	2.10 Mesh Current and Node Voltage Analysis
	2.11 Network Theorems
		2.11.1 Superposition Theorem
		2.11.2 Maximum Power Transfer Theorem
	2.12 Star-delta Transformation of Resistances
	Review Questions
	Objective Type Questions
Chapter 3: AC Network Analysis
	3.1 AC Fundamentals
		3.1.1 Introduction
		3.1.2 Generation of Alternating Voltage in an Elementary Generator
		3.1.3 Concept of Frequency, Cycle, Time period, Instantaneous value, Average value, Maximum value
		3.1.4 Sinusoidal and Non-sinusoidal Wave Forms
		3.1.5 Concept of Average Value and Root Mean Square (RMS) value
		3.1.6 Analytical Method of Calculation of RMS Value, Average Value, and Form Factor
		3.1.7 RMS and Average Values of Half wave Rectified Alternating quantity
		3.1.8 Concept of Phase and Phase Difference
	3.2 Single-phase AC Circuits
		3.2.1 Behaviour of R, L, and C in ac Circuits
		3.2.2 R-L Series Circuit
		3.2.3 Apparent Power, Real power and Reactive power
		3.2.4 Power in an AC Circuit
		3.2.5 Power Factor and its Significance
		3.2.6 R-C Series Circuits
		3.2.7 R-L-C Series Circuit
		3.2.8 AC Parallel Circuits
		3.2.9 AC Series Parallel Circuits
	3.3 Resonance in AC Circuits
		3.3.1 Resonance in AC Series Circuits
		3.3.2 Resonance in AC Parallel Circuits
	Review Questions
	Objective Type Questions
	Objective Type Questions
Chapter 4: Transient Analysis
	4.1 Steady-state Response and Transient Response
	4.2 Writing Differential Equations for Circuits
	4.3 Transients in DC circuits
		4.3.1 Introduction
		4.3.2 Transient in R–L Circuits
		4.3.3 Transient in R–C Circuits
	4.4 Transient Response of Second-Order Systems
		4.4.1 Electrical System
		4.4.2 Mechanical System
		4.4.3 Transient Response of an L–R–C Series Circuits (a Second-order System)
	Review Questions
	Objective Type Questions
Chapter 5: AC Power – Generation and Distribution
	5.1 Three-Phase System
		5.1.1 Introduction
		5.1.2 Advantages of Three Phase Systems
		5.1.3 Generation of Three-Phase Voltages
		5.1.4 Terms Used in Three-Phase Systems and Circuits
		5.1.5 Meaning of Phase and Phase Sequence
	5.2 Three-phase Winding Connections
		5.2.1 Star Connection
		5.2.2 Delta-Connection
	5.3 Power in AC Circuits-Star Connected System
	5.4 Power in AC Circuits – Delta Connected System
	5.5 Complex Power – Active and Reactive Powers
	5.6 Comparison between Star Connection and Delta Connection
	5.7 Three-phase Power and its Measurement
		5.7.1 One Wattmeter Method
		5.7.2 Two Wattmeter Method
		5.7.3 Three Wattmeter Method
	5.8 Balanced Supply and Balanced Load
	5.9 Unbalanced Supply and Unbalanced Load
	5.10 General Lay out of Electrical Power System
	5.11 Generati on of Electrical Power
		5.11.1 Introduction
		5.11.2 Generation of Electricity
		5.11.3 Sources of Energy for Electricity Generation
		5.11.4 Thermal Power Generation from Fossil-fuel
		5.11.5 Hydroelectric Power Generating Stations
		5.11.6 Nuclear Power Generating Stations
		5.11.7 Non-Conventional or Alternative Generating Stations
	5.12 Transmission of Electrical Power
		5.12.1 AC Versus DC Transmission
		5.12.2 Concept of a Grid
	5.13 Electricity Distribution System
		5.13.1 Overhead Versus Underground Distribution System
		5.13.2 Connection Schemes of Distribution System
		5.13.3 Standard Transition and Distribution Voltages
	5.14 Residential Wiring
		5.14.1 Service Connection
		5.14.2 Service Mains
		5.14.3 Distribution Board for Single Phase Installation
		5.14.4 Neutral and Earth Wire
		5.14.5 Earthing or Grounding and Safety
		5.14.6 System or Types of Wiring
		5.14.7 System of Connection of Lights Fans and other Loads
	5.15 Circuit Protective Devices and Safety Precautions
	5.16 Efficient and Safe Use of Electricity
	Review Questions
	Objective Type Questions
Chapter 6: Electronic Instrumentation and Measurement
	6.1 Measurement Systems
	6.2 Analog and Digital Instruments
	6.3 Passive and Active instruments
	6.4 Static Characteristics of Instruments
		6.4.1 Accuracy
		6.4.2 Precision
		6.4.3 Sensitivity and Resolution
		6.4.4 Error, Threshold and Loading Effect
	6.5 Transducers in Instrumentation System
		6.5.1 Classification of Transducers
		6.5.2 Characteristics of a Transducer
	6.6 Linear Variable Differential Transformer
	6.7 Capacitive Transducers
	6.8 Inductive Transducers
	6.9 Potentiometric Transducer
	6.10 Strain Gauge Transducer
	6.11 Thermistors
	6.12 Thermocouple Transducer
	6.13 Hall Effect Transducer
	6.14 Piezoelectric Transducer
	6.15 Photoelectric Transducer
	6.16 Selection of Transducers
	6.17 Signal Conditioning
		6.17.1 Signal Amplification
		6.17.2 Signal Attenuation
		6.17.3 Signal Linearization
		6.17.4 Signal Filtering
		6.17.5 Recovery of Signals
		6.17.6 Signal Manipulation
		6.17.7 Signal Conversion
	6.18 Analog to Digital Converter
	6.19 Digital to Analog Converter
	6.20 Noise Problems, Wiring, Shielding, and Grounding
	Review Questions
	Objective Type Questions
Chapter 7: Magnetism, Magnetic Circuits, and Electromechanical Energy Conversion
	7.1 Magnets and Magnetic Fields
	7.2 Magnetic Field Strength
	7.3 Magnetization Curve of a Magnetic Material
	7.4 Hysteresis Loss and Eddy Current Loss in Magnetic Materials
	7.5 Magnetic Circuits
	7.6 Comparison between Magnetic and Electric Circuits
	7.7 Magnetic Leakage and Fringing
	7.8 Series and Parallel Magnetic Circuits
	7.9 Attractive Force of Electromagnets
	7.10 Principles of Electromechanical Energy Conversion
	Review Questions
	Objective Type Questions
Chapter 8: Transformers
	8.1 Introduction
	8.2 Applications of Transformers
	8.3 Basic Principle and Constructional Details
		8.3.1 Basic Principle
		8.3.2 Constructional Details
	8.4 Core Type and Shell Type Transformers
	8.5 Power Transformers and Distribution Transformers
	8.6 Emf Equation
	8.7 Transformer on No-load
	8.8 Transformer on Load
	8.9 Transformer circuit Parameters and Equivalent Circuit
	8.10 Phasor diagram of a Transformer
	8.11 Concept of Voltage Regulation
	8.12 Concept of an Ideal Transformer
	8.13 Transformer Tests
		8.13.1 Open-Circuit Test or No-load Test
		8.13.2 Short-circuit Test
	8.14 Efficiency of a Transformer
	8.15 Condition for Maximum Efficiency
	8.16 All-day Efficiency
	8.17 Calculation of Regulation of a Transformer
	8.18 Factors Affecting Losses in a Transformer
	8.19 Auto-Transformer
	Review Questions
	Objective Type Questions
Chapter 9: DC Machines
	9.1 Introduction and Principle of Working
	9.2 Constructional Details
		9.2.1 The Field System
		9.2.2 The Armature
		9.2.3 Armature Winding
		9.2.4 Types of Armature Winding
	9.3 Emf Equation of a DC Machine
	9.4 Types of DC machines
	9.5 Characteristics of DC Generators
		9.5.1 No-Load Characteristic
		9.5.2 Load Characteristics
		9.5.3 Effect of Armature Reaction
	9.6 Applications of DC Generators
	9.7 Operation of a DC Machine as a Motor
		9.7.1 Working Principle of a DC Motor
		9.7.2 Changing the Direction of Rotation
		9.7.3 Energy Conversion Equation
		9.7.4 Torque Equation
		9.7.5 Starting of a DC Motor
	9.8 Speed Control of DC Motors
		9.8.1 Starter for a DC Motor
	9.9 Types and Characteristics of DC motors
		9.9.1 Characteristics of DC Shunt Motors
		9.9.2 Characteristics of DC Series Motors
		9.9.3 Characteristics of DC Compound Motors
	9.10 Losses and Efficiency
		9.10.1 Losses in a DC Machine
		9.10.2 Efficiency of DC Machine
		9.10.3 Determination of Efficiency
	9.11 Applications of DC Motors
	Review Questions
	Objective Type Questions
Chapter 10: Three-Phase Induction Motors
	10.1 Introduction
	10.2 Constructional Details
	10.3 Windings and Pole Formation
	10.4 Production of Rotating Magnetic Field
	10.5 Principle of Working
	10.6 Changing the Direction of Rotation
	10.7 Rotor Induced EMF, Rotor Frequency, Rotor Current
	10.8 Losses in Induction Motors
	10.9 Power Flow Diagram
	10.10 Torque Equation
	10.11 Starting Torque
	10.12 Condition for Maximum Torque
	10.13 Torque-Slip Characteristic
	10.14 Variation of Torque-slip Characteristic with Change in Rotor Circuit Resistance
	10.15 Starting of Induction Motors
		10.15.1 Direct on-line starting
		10.15.2 Manual star-Delta Starter
	10.16 Speed Control of Induction Motors
	10.17 Determination of Efficiency
		10.17.1 No-load Test
		10.17.2 Blocked rotor test
	10.18 Applications of Induction Motors
	Review Questions
	Objective Type Questions
Chapter 11: Single-Phase Motors
	11.1 Introduction to Single-phase Induction Motors
	11.2 Constructional Details
	11.3 Double Revolving Field Theory and Principle of Working of Single-phase Induction Motors
	11.4 Torque-Speed Characteristic
	11.5 Split-phase Induction Motors
	11.6 Shaded-pole Induction Motor
	11.7 Single-phase AC Series Motors
	11.8 Operation of Series Motor on DC and AC (Universal Motors)
	11.9 Single–phase Synchronous Motors
		11.9.1 Reluctance Motors
		11.9.2 Hysteresis Motors
	11.10 Stepper Motors
	Review Questions
	Objective Type Questions
Chapter 12: Alternator and Synchronous Motor
	12.1 Introduction
	12.2 Constructional Details of Synchronous Machines
	12.3 Advantages of stationary Armature and Rotating Field
	12.4 Reasons for Use of Laminated Sheets for Stator and Rotor
	12.5 Armature Winding
	12.6 Concept of Coil Span, Mechanical and Electrical Degrees
	12.7 Types of Windings
	12.8 Induced EMF in a Synchronous Machine
		12.8.1 EMF Equation
		12.8.2 Distribution Factor
		12.8.3 Pitch Factor
	12.9 Open-circuit or No-load Characteristic
	12.10 Alternator on Load
	12.11 Synchronous Impedance and Voltage drop due to Synchronous Impedance
	12.12 Voltage Regulation of an Alternator
	12.13 Determination of Voltage Regulation by Synchronous Impedance Method
	12.14 Alternators Connected in Parallel to Supply a Common Load
		12.14.1 Advantages of Parallel Operation
		12.14.2 Parallel Connection of Alternators
		12.14.3 Conditions for Parallel Connection and Synchronization
		12.14.4 Load Sharing
	12.15 Synchronous Motor
		12.15.1 Introduction
		12.15.2 Principle of Working of Synchronous Motor
		12.15.3 Effect of Change of Excitation of a Synchronous motor
		12.15.4 Application of Synchronous Motor
	Review Questions
	Objective Type Questions
Second Semester Examination–2010
First Semester Examination–2009
Second Semester Examination–2009
First Semester Examination–2008
Second Semester Examination–2008




نظرات کاربران