ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Basic Electrical and Electronics Engineering: For PTU Subject Code BTEE-101

دانلود کتاب مهندسی پایه برق و الکترونیک: برای کد موضوع PTU BTEE-101

Basic Electrical and Electronics Engineering: For PTU Subject Code BTEE-101

مشخصات کتاب

Basic Electrical and Electronics Engineering: For PTU Subject Code BTEE-101

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9788131767863, 9788131798690 
ناشر: Pearson Education 
سال نشر: 2011 
تعداد صفحات: [512] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 59,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Basic Electrical and Electronics Engineering: For PTU Subject Code BTEE-101 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی پایه برق و الکترونیک: برای کد موضوع PTU BTEE-101 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
Preface
About the Author
Roadmap to the Syllabus
Chapter 1: DC Circuits
	1.1 Introduction
	1.2 Electrical Circuit Elements
		1.2.1 Resistors
		1.2.2 Inductors
		1.2.3 Capacitors
	1.3 DC Network Terminologies and Circuit Fundamentals
		1.3.1 Network Terminologies
		1.3.2 Voltage and Current Sources
		1.3.3 Source Transformation
		1.3.4 Series–Parallel Circuits
		1.3.5 Voltage and Current Divider Rules
	1.4 Kirchhoff ’s Laws
		1.4.1 Kirchhoff’s Current Law
		1.4.2 Kirchhoff’s Voltage Law
		1.4.3 Applying KCL and KVL
	1.5 Solving Circuit Problems Using Kirchhoff ’s Laws
		1.5.1 Solving Simultaneous Equations Using Cramer’s Rule
		1.5.2 Evaluating Determinants
		1.5.3 Mesh Current Analysis Method
		1.5.4 Node Voltage Analysis Method
	1.6 Star–Delta Conversion
		1.6.1 Transforming Relations for Delta to Star
		1.6.2 Transforming Relations for Star to Delta
		1.6.3 Network Simplification Using Star–Delta Transformation
	1.7 Computation of Resistance at Constant Temperature and at Different Temperatures
		1.7.1 Resistance and Resistivity
		1.7.2 Computation of Resistance at Constant Temperature
		1.7.3 Computation of Resistance at Different Temperatures
	1.8 Ohm’s Law—Statement, Illustration and Limitation
		1.8.1 Statement of Ohm’s Law
		1.8.2 Illustration of Ohm’s Law
		1.8.3 Limitations of Ohm’s Law
	1.9 Work, Power and Energy
		1.9.1 Concept of Mass, Weight, Force and Torque
		1.9.2 Concept of Work, Power and Energy
		1.9.3 Units of Work, Power and Energy
	1.10 DC Transients
		1.10.1 Introduction
		1.10.2 Transient in R–L Series Circuit
		1.10.3 Transient in R–C Series Circuit
	1.11 Review Questions
Chapter 2: AC Fundamentals and Circuits
	2.1 Introduction
	2.2 Generation of Alternating Electro-motive Force (EMF)
	2.3 Concept of Three-phase EMF Generation
		2.3.1 Advantages of Three-phase Systems
		2.3.2 Generation of Three-phase Voltages
		2.3.3 Terms Used in Three-phase Systems and Circuits
	2.4 Concept of Peak, Root Mean Square and Average Values of Alternating Quantity
		2.4.1 Concept of Frequency, Cycle, Time Period, Instantaneous Value, Average Value and Maximum or Peak Value
		2.4.2 Peak Value, Average Value and Root Mean Square Value of an Alternating Quantity
		2.4.3 RMS and Average Values of Half-wave-rectified Alternating Quantity
	2.5 Phasor Representation of Alternating Quantities
		2.5.1 Concept of Phase and Phase Difference
		2.5.2 Phasor Representation of Alternating Quantities
	2.6 Analysis of AC Circuits
		2.6.1 Single-phase AC Circuits
		2.6.2 AC Applied Across a Pure Resistor
		2.6.3 AC Applied Across a Pure Inductor
		2.6.4 AC Applied Across a Pure Capacitor
	2.7 Representation of Alternating Quantities in Rectangular and Polar Form
		2.7.1 Use of Phasor Algebra
		2.7.2 Significance of Operator J
		2.7.3 Addition and Subtraction of Phasor Quantities
		2.7.4 Representation of Alternating Quantities in Rectangular and Polar Forms
	2.8 Introduction to Resistive, Inductive and Capacitive Circuits and their Series and Parallel Combinations
		2.8.1 Introduction
		2.8.2 R–L Series Circuit
		2.8.3 R–C Series Circuit
		2.8.4 R–L–C Series Circuit
		2.8.5 AC Parallel Circuits
		2.8.6 AC Series—Parallel Circuits
	2.9 Resonance in AC Circuits
		2.9.1 Resonance in AC Series Circuit
		2.9.2 Resonance in AC Parallel Circuits
	2.10 Analysis of Balanced Three-phase System with Star–Delta Connection
		2.10.1 Star Connection
		2.10.2 Delta Connection
		2.10.3 Relationship of Line and Phase Voltages and Currents in a Star-connected System
		2.10.4 Relationship of Line and Phase Voltages and Currents in a Delta-connected System
		2.10.5 Active and Reactive Power
		2.10.6 Comparison Between Star Connection and Delta Connection
	2.11 Review Questions
Chapter 3: Magnetic Circuits and Transformers
	3.1 Introduction
		3.1.1 Magnets and Magnetic Fields
		3.1.2 Magnetic Circuits
		3.1.3 Magnetic Flux Density
		3.1.4 Magnetic Field Strength
		3.1.5 Permeability
		3.1.6 Relative Permeability
		3.1.7 Magnetization Curve of a Magnetic Material
		3.1.8 Hysteresis Loss and Eddy Current Loss in Magnetic Materials
		3.1.9 Comparison Between Magnetic and Electric Circuits
		3.1.10 Series and Parallel Magnetic and Electric Circuits
	3.2 Magnetic Effects of Electric Current
		3.2.1 Magnetic Field Around a Current-carrying Conductor
		3.2.2 Magnetic Field Around a Coil
	3.3 Interaction of Current-carrying Conductor and Coil with Magnetic Field
		3.3.1 A Current-carrying Conductor in a Magnetic Field
		3.3.2 A Current-carrying Coil in a Magnetic Field
	3.4 Laws of Electromagnetic Induction
		3.4.1 Faraday’s Laws
		3.4.2 Lenz’s Law
		3.4.3 Applications of Faraday’s Laws
	3.5 Self-inductance of a Coil
	3.6 Mutual Inductance and Coefficient of Coupling
		3.6.1 Concept of Mutual Inductance Due to Magnetic Coupling of Coils
		3.6.2 Mutual Inductance and the Use of Dot Convention
	3.7 Transformers
		3.7.1 Construction Details and Working Principles
		3.7.2 EMF Equation
		3.7.3 Transformer on No-load
		3.7.4 Transformer on Load
		3.7.5 Transformer Circuit Parameters and Equivalent Circuit
	3.8 Voltage Regulation
	3.9 Efficiency of a Transformer
		3.9.1 Determination of Efficiency and Voltage Regulation
		3.9.2 Applications of Transformers
	3.10 Review Questions
Chapter 4: Rotating Electric Machines
	4.1 Introduction
		4.1.1 DC Machines—Principle of Working
		4.1.2 Functions of Brush and Commutator in a DC Generator
		4.1.3 Function of Brush and Commutator in Motoring Action
		4.1.4 Construction Details
		4.1.5 EMF Equation of a DC Machine
		4.1.6 Types of DC Machines
		4.1.7 Characteristics of DC Generators
		4.1.8 Applications of DC Generators
		4.1.9 Operation of a DC Machine as a Motor
		4.1.10 Starting a DC Motor
		4.1.11 Speed Control Methods of DC Motors
		4.1.12 Types and Characteristics of DC Motors
		4.1.13 Losses and Efficiency
		4.1.14 Applications of DC Machines
	4.2 Three-phase Induction Motors
		4.2.1 Construction Details
		4.2.2 Windings and Pole Formation
		4.2.3 Production of Rotating Magnetic Field
		4.2.4 Principle of Working
		4.2.5 Losses in Induction Motors
		4.2.6 Torque Equation
		4.2.7 Torque–Slip Characteristic
		4.2.8 Starting of Induction Motors
		4.2.9 Speed Control Methods of Induction Motors
		4.2.10 Determination of Efficiency
		4.2.11 Applications of Induction Motors
	4.3. Synchronous Machines—Generator and Motors
		4.3.1 Constructional Details of Synchronous Machines
		4.3.2 Induced EMF in a Synchronous Machine
		4.3.3 No-load Characteristics of a Synchronous Generator
		4.3.4 Synchronous Generator on Load—Load Characteristics
		4.3.5 Voltage Regulation of a Synchronous Generator
		4.3.6 Determination of Voltage Regulation of a Synchronous Generator
		4.3.7 Synchronous Motor
	4.4 Review Questions
Chapter 5: Transducers
	5.1 Introduction
	5.2 Classification of Transducers
	5.3 Characteristics of a Transducer
	5.4 Linear Variable Differential Transformer
		5.4.1 Working Principle
		5.4.2 Advantages and Disadvantages of LVD Transducers
		5.4.3 Applications of LVDT
	5.5 Strain Gauge Transducer
	5.6 Thermistors
	5.7 Introduction and Applications of Multimeters
		5.7.1 Types of Multimeters
		5.7.2 A Basic Analog Multimeter
		5.7.3 Digital Multimeter
		5.7.4 Applications of a Digital Multimeter
		5.7.5 Advantages of Using a Digital Multimeter
		5.7.6 Precautions to be Taken while Using a Multimeter
	5.8 Review Questions
Chapter 6: Semiconductor Devices
	6.1 Introduction
	6.2 Review of Atomic Theory
	6.3 Binding Forces Between Atoms in Semiconductor Materials
	6.4 Extrinsic Semiconductors
		6.4.1 N-Type Semiconductor Material
		6.4.2 P-Type Semiconductor Material
	6.5 The p–n Junction
	6.6 Biasing of p–n Junction
	6.7 P–n Junction: Principle of Operation and Characteristics
		6.7.1 Volt–Ampere Characteristics of a Diode
		6.7.2 An Ideal Diode
		6.7.3 Diode Parameters and Diode Ratings
	6.8 Rectifiers
		6.8.1 Introduction
		6.8.2 Half-wave Rectifier
		6.8.3 Analysis of Half-wave Rectifier
		6.8.4 Full-wave Rectifier
		6.8.5 Analysis of Full-wave Rectifiers
		6.8.6 Comparison of Half-wave and Full-wave Rectifiers
	6.9 Zener Diode
		6.9.1 Principle of Operation and Characteristics
		6.9.2 Applications of Zener Diode
	6.10 Bipolar Junction Transistors
		6.10.1 Working of an n–p–n Transistor
		6.10.2 Working of a p–n–p Transistor
		6.10.3 Transistor Configurations
		6.10.4 Applications of Transistors
	6.11 Field-effect Transistors
		6.11.1 Junction Field-effect Transistors
		6.11.2 FET Applications
	6.12 MOSFET
		6.12.1 The Enhancement MOSFET (EMOSFET)
		6.12.2 The Depletion MOSFET
		6.12.3 Static Characteristics of MOSFET
		6.12.4 Applications of MOSFET
	6.13 Regulated Power Supply
	6.14 Review Questions
Chapter 7: Digital Electronics
	7.1 Introduction
	7.2 Number Systems
		7.2.1 Decimal Number System
		7.2.2 Binary Number System
		7.2.3 Conversion of Binary to Decimal
		7.2.4 Conversion of Decimal to Binary
		7.2.5 Binary Addition
		7.2.6 Binary Subtraction0.
		7.2.7 Binary Multiplication
	7.3 Octal Number System
	7.4 Hexadecimal Number System
		7.4.1 Applications of Binary Numbers in Computers
	7.5 Logic Gates
		7.5.1 NOT Gate
		7.5.2 OR Gate
		7.5.3 AND Gate
		7.5.4 NAND Gate
		7.5.5 NOR Gate
	7.6 Boolean Algebra
		7.6.1 Boolean Expressions
	7.7 De Morgan’s Theorem
	7.8 Combinational Circuits
	7.9 Simplification of Boolean Expressions Using De Morgan’s Theorem
	7.10 Universal Gates
		7.10.1 Use of NAND Gate to form the Three Basic Gates
		7.10.2 Use of NOR Gate to form the Three Basic Gates
	7.11 Flip-flops
		7.11.1 RS Flip-flop
		7.11.2 Gated or Clocked RS Flip-flop
		7.11.3 JK Flip-flop
		7.11.4 D Flip-flops
		7.11.5 T Flip-flops (Toggle Flip-flop)
		7.11.6 Master–Slave JK Flip-flop
		7.11.7 Counters and Shift Registers
		7.11.8 Arithmetic Circuits
		7.11.9 Memory Function or Data Storage
		7.11.10 Digital Systems
	7.12 Review Questions
Solved Question Papers




نظرات کاربران