ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Basic Electrical and Electronics Engineering

دانلود کتاب مهندسی پایه برق و الکترونیک

Basic Electrical and Electronics Engineering

مشخصات کتاب

Basic Electrical and Electronics Engineering

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9788131754566, 9789332501126 
ناشر: Pearson Education 
سال نشر: 2011 
تعداد صفحات: [735] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Basic Electrical and Electronics Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی پایه برق و الکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
Preface
About the Author
Chapter 1: Basic Concepts, Laws, and Principles
	1.1 Introduction
	1.2 Atomic Structure and Electric Charge
	1.3 Conductors, Insulators, and Semiconductors
	1.4 Electric Field and Magnetic Field
	1.5 Electric Current, Resistance, Potential, and Potential Difference
		1.5.1 Electric Current
		1.5.2 Resistance
		1.5.3 Potential and Potential Difference
	1.6 Ohm’s Law
	1.7 The Effect of Temperature on Resistance
	1.8 Work, Power, and Energy
		1.8.1 Work
		1.8.2 Power
		1.8.3 E nergy
		1.8.4 Units of Work, Power, and Energy
	1.9 Electromagnetism and Electromagnetic Induction
		1.9.1 Introduction
		1.9.2 Magnetic Field Around a Current-carrying Conductor
		1.9.3 Magnetic Field Around a Coil
		1.9.4 A Current-carrying Conductor Placed in a Magnetic Field
		1.9.5 A Current-carrying Coil Placed in a Magnetic Field
	1.10 Laws of Electromagnetic Induction
	1.11 Induced EMF in a Coil Rotating in a Magnetic Field
	1.12 EMF Induced in a Conductor
	1.13 Dynamically Induced EMF and Statically Induced EMF
	1.14 Self-induced EMF and Mutually induced EMF
	1.15 Self-Inductance of a Coil
	1.16 Mutual Inductance
	1.17 Inductance of Coils Connected in Series Having a Common Core
	1.18 Energy Stored in a Magnetic Field
	1.19 Electrical Circuit Elements
		1.19.1 Resistors
		1.19.2 Inductors
		1.19.3 Capacitors
	1.20 Energy Stored in a Capacitor
	1.21 Capacitor in Parallel and in Series
	1.22 Review Questions
Chapter 2: DC Networks and Network Theorems
	2.1 Introduction
	2.2 DC Network Terminologies, Voltage, and Current Sources
		2.2.1 Network Terminologies
		2.2.2 V oltage and Current Sources
		2.2.3 Source Transformation
		2.3 Series–Parallel Circuits
			2.3.1 Series Circuits
			2.3.2 Parallel Circuits
			2.3.3 Series–Parallel Circuits
		2.4 Voltage and Current Divider Rules
			2.4.1 Voltage Divider Rule
			2.4.2 Current Divider Rule
		2.5 kirchhoff’s laws
			2.5.1 kirchhoff’s Current law
			2.5.2 kirchhoff’s voltage law
			2.5.3 Solution of Simultaneous Equations Using Cramer’s Rule
			2.5.4 M ethod of Evaluating Determinant
		2.6 Maxwell’s Mesh Current Method
		Nodal Voltage Method (Nodal Analysis)
		2.8 Network Theorems
			2.8.1 Superposition Theorem
			2.8.2 Thevenin’s Theorem
			2.8.3 Norton’s Theorem
			2.8.4 Millman’s Theorem
			2.8.5 Maximum Power Transfer Theorem
			2.9 Star–Delta Transformation
				2.9.1 Transforming Relations for Delta to Star
				2.9.2 T ransforming Relations for Star to Delta
			2.10 DC Transients
				2.10.1 Introduction
				2.10.2 Transient in R–L Circuit
				2.10.3 Transient in R–C Circuit
				2.10.3 Transient in R–C Circuit
			2.11 Review Questions
Chapter 3: AC Fundamentals and Single-phase Circuits
	3.1 AC Fundamentals
		3.1.1 Introduction
		3.1.2 Generation of Alternating Voltage in an Elementary Generator
		3.1.3 Concept of Frequency, Cycle, Time Period, Instantaneous Value, Average Value, and Maximum Value
		3.1.4 Sinusoidal and Non-sinusoidal Wave Forms
		3.1.5 Concept of Average Value and Root Mean Square (RMS)Value of an Alternating Quantity
		3.1.6 Analytical Method of Calculation of RMS Value, Average Value, and Form Factor
		3.1.7 RMS and Average Values of Half-wave-rectified Alternating Quantity
		3.1.8 Concept of Phase and Phase Difference
	3.2 Single-phase AC Circuits
		3.2.1 Behaviour of R, L, and C in AC Circuits
		3.2.2 L–R Series Circuit
		3.2.3 Apparent Power, Real Power, and Reactive Power
		3.2.4 Power in an AC Circuit
		3.2.5 R—C Series Circuit
		3.2.6 R–L–C Series Circuit
		3.2.7 AC Parallel Circuits
		3.2.8 AC Series—Parallel Circuits
	3.3 Resonance in AC Circuits
		3.3.1 Resonance in AC Series Circuit
		3.3.2 Resonance in AC Parallel Circuits
	3.4 Review Questions
Chapter 4: Three-phase System
	4.1 Introduction
	4.2 Advantages of Three-phase Systems
	4.3 Generation of Three-Phase Voltages
	4.4 Terms Used in Three-phase Systems and Circuits
	4.5 Three-phase Winding Connections
		4.5.1 Star Connection
		4.5.2 Delta Connection
		4.5.3 Relationship of Line and Phase Voltages, and Currents in a Star-connected System
		4.5.4 Relationship of Line and Phase Voltages and Currents in a Delta-connected System
	4.6 Active and Reactive Power
	4.7 Comparison between Star Connection and Delta Connection
	4.8 Measurement of Power in Three-phase Circuits
		4.8.1 One-Wattmeter Method
		4.8.2 Two-Wattmeter Method
		4.8.3 Three-Wattmeter Method
	4.9 Review Questions
Chapter 5: Electromagnetism and Magnetic Circuits
	5.1 Magnets and Magnetic Fields
		5.1.1 Field Around a Current-carrying Conductor
		5.1.2 Magnetic Flux Density
		5.1.3 Magnetic Field Strength
		5.1.4 Permeability
		5.1.5 Relative Permeability
	5.2 Magnetic Field Due to Current-carrying Conductor Laws
of Electromagnetism
		5.2.1 Ampere’s Circuital Law
		5.2.2 Biot-Savart Law
		5.2.3 Application of Biot-Savart Law
	5.3 Magnetization Curve of a Magnetic Material
	5.4 Hysteresis Loss and Eddy Current Loss in Magnetic
Materials
		5.4.1 Hysteresis Loss
		5.4.2 Eddy Current Loss
	5.5 Magnetic Circuits
	5.6 Comparison Between Magnetic and Electric Circuits
	5.7 Magnetic Leakage and Fringing
	5.8 Series and Parallel Magnetic Circuits
	5.9 Attractive Force or the Lifting Power of Electromagnets
	5.10 Review Questions
Chapter 6: Transformers
	6.1 Introduction
	6.2 Applications of Transformers
	6.3 Basic Principle and Constructional Details
		6.3.1 Basic Principle
		6.3.2 Constructional Details
	6.4 Core-Type and Shell-Type Transformers
		6.4.1 Power Transformers and Distribution Transformers
	6.5 EMF Equation
	6.6 Transformer on No-Load
	6.7 Transformer on Load
	6.8 Transformer Circuit Parameters and Equivalent Circuit
	6.9 Phasor Diagram of a Transformer
	6.10 Concept of Voltage Regulation
	6.11 Concept of an Ideal Transformer
	6.12 Transformer Tests
		6.12.1 Open-circuit Test or No-load Test
		6.12.2 Short-circuit Test
	6.13 Efficiency of a Transformer
	6.14 Condition for Maximum Efficiency
	6.15 All-day Efficiency
	6.16 Calculation of Regulation of a Transformer
	6.17 Factors Affecting Losses in a Transformer
	6.18 Solved Numerical Problems
	6.19 Review Questions
Chapter 7: DC Machines
	7.1 Introduction and Principle of Working
		7.1.1 Nature of Load Current When Output is Taken Out Through Brush and Slip-ring Arrangement
		7.1.2 Nature of Load Current When Output Is Taken Through Brush and Commutator Arrangement
		7.1.3 Function of Brush and Commutators in Motoring Action
	7.2 Constructional Details
		7.2.1 The Field System
		7.2.2 The Armature
		7.2.3 Armature Winding
		7.2.4 Types of Armature Winding
	7.3 EMF Equation of a DC Machine
		7.3.1 Induced EMF is Equated to Flux Cut Per Second
	7.4 Types of DC Machines
	7.5 Characteristics of DC Generators
		7.5.1 No-load Characteristics
		7.5.2 Load Characteristics
	7.6 Applications of DC Generators
	7.7 Operation of a DC Machine As a Motor
		7.7.1 Working Principle of a DC Motor
		7.7.2 Changing the Direction of Rotation
		7.7.3 Energy Conversion Equation
	7.8 Torque Equation
	7.9 Starting a DC Motor
	7.10 Speed Control of DC Motors
		7.10.1 Voltage Control Method
		7.10.2 Field Control Method
		7.10.3 Armature Control Method
	7.11 Starter for a DC Motor
		7.11.1 Three-point Starter
		7.11.2 Four-point Starter
	7.12 Types and Characteristics of DC Motors
		7.12.1 Characteristics of DC Shunt Motors
		7.12.2 Characteristics of DC Series Motors
		7.12.3 Characteristics of DC Compound Motors
	7.13 Losses and Efficiency
		7.13.1 Losses in a DC Machine
		7.13.2 Efficiency of DC Machine
		7.13.3 Condition for Maximum Efficiency
	7.14 Applications of DC Machines
		7.14.1 DC Generators
		7.14.2 DC Motors
		7.14.3 DC Series Motors
		7.14.4 DC Compound Motors
	7.15 Solved Numerical Problems
	7.16 Review Questions
Chapter 8: Three-phase Induction Motors
	8.1 Introduction
	8.2 Constructional Details
	8.3 Windings and Pole Formation
	8.4 Production of Rotating Magnetic Field
	8.5 Principle of Working
	8.6 Rotor-Induced EMF, Rotor Frequency, Rotor Current
	8.7 Losses in Induction Motors
	8.8 Power Flow Diagram
	8.9 Torque Equation
	8.10 Starting Torque
	8.11 Condition for Maximum Torque
	8.12 Torque–Slip Characteristic
	8.13 Variation of Torque–slip Characteristic With Change in Rotor–Circuit Resistance
	8.14 Starting of Induction Motors
		8.14.1 Direct-on-Line Starting
		8.14.2 Manual Star–Delta Starter
	8.15 Speed Control of Induction Motors
	8.16 Determination of Efficiency
		8.16.1 No-load Test
		8.16.2 Blocked-rotor Test
	8.17 Applications of Induction Motors
	8.18 Solved Numerical Problems
	8.19 Review questions
Chapter 9: Single-phase Motors
	9.1 Introduction to Single-phase Induction Motors
	9.2 Constructional Details
	9.3 Double Revolving Field Theory and Principle of Working
of Single-phase Induction Motors
	9.4 Torque-Speed Characteristic
	9.5 Split-Phase Induction Motors
	9.6 Shaded Pole Induction Motor
	9.7 Single-Phase AC Series Motors
	9.8 Operation of a Series Motor on DC and AC (Universal Motors)
	9.9 Single-Phase Synchronous Motors
		9.9.1 Reluctance Motors
		9.9.2 Hysteresis Motors
	9.10 Stepper Motors
	9.11 Review Questions
Chapter 10: Synchronous Machines
	10.1 Introduction
	10.2 Constructional Details of Synchronous Machines
	10.3 Advantages of Stationary Armature and Rotating Field
	10.4 Use of Laminated Sheets for the Stator and the Rotor
	10.5 Armature Windings
	10.6 Concept of Coil Span, Mechanical, and Electrical Degrees
	10.7 Types of Windings
	10.8 Induced EMF in a Synchronous Machine
		10.8.1 EMF Equation
		10.8.2 Distribution Factor
		10.8.3 Pitch Factor
	10.9 Open-circuit or No-load Characteristic
	10.10 Synchronous Generator on Load
	10.11 Synchronous Impedance and Voltage Drop Due to Synchronous Impedance
	10.12 Voltage Regulation of a Synchronous Generator
	10.13 Determination of Voltage Regulation by the Synchronous Impedance Method
	10.14 Synchronous Generators Connected in Parallel to Supply a Common Load
		10.14.1 Advantages of Parallel Operation
		10.14.2 Parallel Connection of Alternators
		10.14.3 Conditions for Parallel Connection and Synchronization
		10.14.4 Load Sharing
	10.15 Synchronous Motor
		10.15.1 Introduction
		10.15.2 Principle of Working of a Synchronous Motor
		10.15.3 Effect of Change of Excitation of a Synchronous Motor
		10.15.4 Application of Synchronous Motors
	10.16 Review Questions
Chapter 11: Measurement and Measuring Instruments
	11.1 Introduction
	11.2 Analog and Digital Instruments
	11.3 Passive and Active Instruments
	11.4 Static Characteristics of Instruments
		11.4.1 Accuracy
		11.4.2 Precision
		11.4.3 Sensitivity and Resolution
		11.4.4 Error, Threshold, and Loading Effect
	11.5 Linear and Non-Linear Systems
	11.6 Dynamic Characteristics of Instruments
	11.7 Classification of the Instrument System
		11.7.1 Active and Passive Instruments
		11.7.2 Analog and Digital Instruments
		11.7.3 Indicating, Recording, and Integrating Instruments
		11.7.4 Deflection- and Null-type Instruments
	11.8 Measurement Error
	11.9 Indicating-type Instruments
		11.9.1 Permanent Magnet Moving Coil Instruments
		11.9.2 Use of Shunts and Multipliers
		11.9.3 Moving Iron Instruments
		11.9.4 Dynamometer-type moving coil Instruments
	11.10 Measurement of Power
		11.10.1 Power in DC and AC Circuits
		11.10.2 Measurement of Power in Single-phase AC Circuit
		11.10.3 Sources of Error in Measurement Using Dynamometer-type Wattmeters
	11.11 Measurement of Energy
		11.11.1 Introduction
		11.11.2 Constructional details and working Principle of Single-phase Induction-type Energy Meter
	11.12 Instrument Transformers
		11.12.1 Current Transformers
		11.12.2 Potential Transformers
	11.13 Device and Measurement of Insulation Resistance
	11.14 Multimeter and Measurement of Resistance
	11.15 Review Questions
Chapter 12: Transducers
	12.1 Introduction
	12.2 Classification of Transducers
	12.3 Characteristics of a Transducer
	12.4 Linear Variable Differential Transformer
	12.5 Capacitive Transducers
	12.6 Inductive Transducers
	12.7 Potentiometric Transducer
	12.8 Strain Gauge Transducer
	12.9 Thermistors
	12.10 Thermocouples
	12.11 Hall Effect Transducers
	12.12 Piezoelectric Transducer
	12.13 Photoelectric Transducer
	12.14 Selection of Transducers
	12.15 Review Questions
Chapter 13: Power Systems
	13.1 Introduction
	13.2 Generation of Electricity
	13.3 Sources of Energy for Electricity Generation
	13.4 Thermal Power Generation from Fossil Fuel
		13.4.1 Coal-fired Thermal Power Stations
		13.4.2 Gas-fired Thermal Power Stations
		13.4.3 Oil- and Diesel-oil-fired Thermal Power Stations
	13.5 Hydroelectric Power-generating Stations
	13.6 Nuclear Power-Generating Stations
	13.7 Non-conventional or Alternative Generating Stations
		13.7.1 Solar Electricity Generation
		13.7.2 Wind Energy to Produce Electricity
		13.7.3 Electricity from Biomass
		13.7.4 Mini/Micro Hydel Power Generation
		13.7.5 Electricity from Tidal Energy
		13.7.6 Electricity from Ocean Energy
		13.7.7 Electricity from Geothermal Energy
	13.8 Transmission and Distribution of Electricity
		13.8.1 AC Versus DC Transmission
		13.8.2 Distribution System
		13.8.3 Overhead Versus Underground Distribution Systems
		13.8.4 Connection Schemes of Distribution System
	13.9 Domestic Wiring
		13.9.1 Service Connection
		13.9.2 Service Mains
		13.9.3 Distribution Board for Single-phase Installation
		13.9.4 Neutral and Earth Wire
		13.9.5 Earthing
		13.9.6 System of Wiring
		13.9.7 System of Connection of Lights, Fans and Other Electrical Loads
	13.10 Circuit Protective Devices and Safety Precautions
		13.10.1 Safety Precautions in Using Electricity
	13.11 Efficient Use of Electricity
	13.12 Review Questions
Chapter 14: Semiconductor Devices
	14.1 Introduction
	14.2 Review of Atomic Theory
	14.3 Binding Forces Between Atomsin Semiconductor Materials
	14.4 Extrinsic Semiconductors
		14.4.1 N-Type Semiconductor Material
		14.4.2 P-Type Semiconductor Material
		14.4.3 T he p–n Junction
		14.4.4 Biasing of p–n Junction
	14.5 Semiconductor Diodes
	14.5.1 Volt–ampere Characteristic of a Diode
	14.5.2 An Ideal Diode
	14.5.3 Diode Parameters and Diode Ratings
	14.6 Zener Diode
	14.6.1 Zener Diode As Voltage Regulator
	14.6.2 Zener Diode As a Reference Voltage
	14.7 Bipolar Junction Transistors
	14.7.1 Working of a n–p–n Transistor
	14.7.2 Working of a p–n–p Transistor
	14.7.3 Transistor Configurations
	14.7.4 Transistor As an Amplifier
	14.7.5 Transistor As a Switch
	14.8 Field Effect Transistors
		14.8.1 Junction Field Effect Transistors
		14.8.2 FET Applications
	14.9 MOSFET
		14.9.1 The Enhancement MOSFET (EMOSFET)
		14.9.2 The Depletion MOSFET
		14.9.3 Static Characteristics of MOSFET
		14.9.4 Applications of MOSFET
	14.10 Silicon-controlled Rectifier
		14.10.1 Characteristics of SCR
		14.10.2 Two-transistor Analogy of an SCR
		14.10.3 Applications of SCR
	14.11 DIAC
	14.12 TRIAC
	14.13 Optoelectronic Devices
		14.13.1 Light-dependent Resistor
		14.13.2 Light-emitting Diodes
		14.13.3 Seven Segment Displays
		14.13.4 Liquid Crystal Displays
		14.13.5 Photodiodes
		14.13.6 Photovoltaic Cells or Solar Cells
		14.13.7 Phototransistors
		14.13.8 Photo-darlington
		14.13.9 Optocouplers
	14.14 Review Questions
Chapter 15: Rectifiers and Other Diode Circuits
	15.1 Rectifiers
		15.1.1 introduction
		15.1.2 Half-wave Rectifier
		15.1.3 Analysis of Half-wave Rectifier
		15.1.4 Full-wave Rectifier
		15.1.5 Full-wave Bridge Rectifier
		15.1.6 Analysis of Full-wave Rectifiers
		15.1.7 Comparison of Half-wave and Full-wave Rectifiers
	15.2 Filters
	15.3 Applications of Diodes in Clipping and Clamping Circuits
		15.3.1 Negative and Positive Series Clippers
		15.3.2 Shunt Clippers
		15.3.3 Biased Clippers
		15.3.4 Clamping Circuits
	15.4 Review Questions
Chapter 16: Digital Electronics
	16.1 Introduction
	16.2 Number Systems
		16.2.1 Decimal Number System
		16.2.2 Binary Number System
		16.2.3 Conversion of Binary to Decimal
		16.2.4 Conversion of Decimal to Binary
		16.2.5 Binary Addition
		16.2.6 Binary Subtraction
		16.2.7 Binary Multiplication
	16.3 Octal Number System
	16.4 Hexadecimal Number System
		16.4.1 Application of Binary Numbers in Computers
	16.5 Logic Gates
		16.5.1 NOT Gate
		16.5.2 OR Gate
		16.5.3 AND Gate
		16.5.4 NAND Gate
		16.5.5 NOR Gate
		16.6 Boolean Algebra
			16.6.1 Boolean Expressions
		16.7 De Morgan’s Theorem
		16.8 Combinational Circuits
		16.9 Simplification of Boolean Expressions Using De Morgan’s Theorem
		16.10 Universal Gates
			16.10.1 Use of NAND Gate to Form the Three Basic Gates
			16.10.2 Use of NOR Gate to Form the Three Basic Gates
		16.11 Flip-Flops
			16.11.1 RS Flip-flop
			16.11.2 Gated or Clocked RS Flip-flop
			16.11.3 JK Flip-flop
			16.11.4 D Flip-flops
			16.11.5 T Flip-flops (Toggle Flip-flop)
			16.11.6 Master–Slave JK Flip-flop
			16.11.7 Counters and Shift Registers
			16.11.8 Arithmetic Circuits
			16.11.9 Memory Function or Data Storage
			16.11.10 Digital Systems
		16.12 Review Questions
Chapter 17: Integrated Circuits
	17.1 Introduction
	17.2 Fabrication of Monolithic ICS
	17.3 Hybrid Integrated Circuits
	17.4 Linear and Digital ICS
	17.5 Operational Amplifiers
	17.6 Op-amp Applications
		17.6.1 Op-amp As a Summing Amplifier
		17.6.2 Op-amp As a Differential Amplifier (Subtractor)
		17.6.3 Op-amp As a Derivative Amplifier
		17.6.4 Op-amp As an Integrator
		17.6.5 Other Applications of Op-amps
	17.7 The 555 Timer Integrated Circuit
		17.7.1 Three Operating Modes of IC 555
		17.7.2 Pin Configuration of IC 555
		17.7.3 Functional Block Diagram of IC 555
		17.7.4 Monostable Application of IC 555
		17.7.5 Astable Application of IC 555
		17.7.6 An IC 555 Timer Astable Oscillator Circuit
	17.8 IC Voltage Regulators or Regulator ICS
	17.9 Digital Integrated Circuits
	17.10 Review Questions
Index




نظرات کاربران