دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Xiang Yu, Lei Guo, Youmin Zhang, Jin Jiang سری: ISBN (شابک) : 2020040179, 9781003144922 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 200 [221] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Autonomous Safety Control of Flight Vehicles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل ایمنی خودکار وسایل نقلیه پروازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Contents Preface List of Figures List of Tables 1. The Development of Safety Control Systems 1.1. Introduction 1.2. Philosophical Distinctions between Active and Passive FTCSs 1.2.1. Architecture and Philosophy of an Active FTCS 1.2.2. Architecture and Philosophy of a Passive FTCS 1.2.3. Summary of FTCS 1.2.3.1. Advantages of an Active FTCS 1.2.3.2. Limitations of an Active FTCS 1.2.3.3. Advantages of a Passive FTCS 1.2.3.4. Limitations of a Passive FTCS 1.3. Basic Concept and Classification of Anti-Disturbance Control Systems 1.4. Safety-Critical Issues of Aerospace Vehicles 1.4.1. Safety Bounds 1.4.2. Limited Recovery Time 1.4.3. Finite-Time Stabilization/Tracking 1.4.4. Transient Management 1.4.5. Composite Faults and Disturbances 1.5. Book Outline 2. Hybrid Fault-Tolerant Control System Design against Actuator Failures 2.1. Introduction 2.2. Modeling of Actuator Faults through Control Effectiveness 2.2.1. Function of Actuators in an Aircraft 2.2.2. Analysis of Faults in Hydraulic Driven Control Surfaces 2.2.3. Modeling of Faults in Multiple Actuators 2.3. Objectives and Formulation of Hybrid FTCS 2.4. Design of the Hybrid FTCS 2.4.1. Passive FTCS Design Procedure 2.4.2. Reconfigurable Controller Design Procedure 2.4.3. Switching Function among Different Controllers 2.5. Numerical Case Studies 2.5.1. Description of the Aircraft 2.5.2. Performance Evaluation under the Passive FTCS 2.5.3. Performance Evaluation under Reconfigurable Controller 2.5.4. Nonlinear Simulation of the Hybrid FTCS 2.6. Conclusions 2.7. Notes 3. Safety Control System Design against Control Surface Impairments 3.1. Introduction 3.2. Aircraft Model with Redundant Control Surfaces 3.2.1. Nonlinear Aircraft Model 3.2.2. Actuator Dynamics 3.2.3. Linearized Aircraft Model with Consideration of Faults 3.3. Redundancy Analysis and Problem Formulation 3.3.1. Redundancy Analysis 3.3.2. Problem Statement 3.4. FTCS Design 3.4.1. FTC Design via State Feedback 3.4.2. FTC via Static Output Feedback 3.5. Illustrative Examples 3.5.1. Example 1 (State Feedback Case) 3.5.2. Example 2 (Static Output Feedback Case) 3.5.3. Sensitivity Analysis 3.6. Conclusions 3.7. Notes 4. Multiple Observers Based Anti-Disturbance Control for a Quadrotor UAV 4.1. Introduction 4.2. Quadrotor Dynamics with Multiple Disturbances 4.2.1. Quadrotor Dynamic Model 4.2.2. The Analysis of Disturbances 4.3. Design of Multiple Observers Based Anti-Disturbance Control 4.3.1. Control for Translational Dynamics 4.3.1.1. DO Design 4.3.1.2. ESO Design 4.3.2. Control for Rotational Dynamics 4.3.3. Stability Analysis 4.3.3.1. Position Loop 4.3.3.2. Attitude Loop 4.4. Flight Experimental Results 4.4.1. Flying Arena and System Configuration 4.4.2. Quadcopter Flight Scenarios 4.4.2.1. Test 1 4.4.2.2. Test 2 4.4.2.3. Test 3 4.4.2.4. Test 4 4.4.3. Assessment 4.5. Conclusions 4.6. Notes 5. Safety Control System Design of HGV Based on Adaptive TSMC 5.1. Introduction 5.2. Preliminaries 5.3. Mathematical Model of a HGV 5.3.1. Nonlinear HGV Model 5.3.2. Actuator Fault Model 5.3.3. Problem Statement 5.4. Control-Oriented Model 5.5. Safety Control System Design of a HGV against Faults and Uncertainties 5.5.1. Multivariable TSMC 5.5.2. Safety Control System Based on Adaptive Multivariable TSMC Technique 5.6. Simulation Results 5.6.1. HGV Flight Condition and Simulation Scenarios 5.6.2. Simulation Analysis of Scenario I 5.6.3. Simulation Analysis of Scenario II 5.7. Concluding Remarks 5.8. Notes 6. Safety Control System Design of HGV Based on Fixed-Time Observer 6.1. Introduction 6.2. HGV Modeling and Problem Statement 6.2.1. HGV Dynamics 6.2.2. Control-Oriented Model Subject to Actuator Faults and Uncertainties 6.2.3. Problem Statement 6.3. Fixed-Time Observer 6.3.1. An Overview of the Developed Observer and Accommodation Architecture 6.3.2. Fixed-Time Observer 6.4. Finite-Time Accommodation Design 6.5. Numerical Simulations 6.5.1. HGV Flight Conditions 6.5.2. Simulation Scenarios 6.5.3. Simulation Results 6.6. Conclusions 6.7. Notes 7. Fault Accommodation with Consideration of Control Authority and Gyro Availability 7.1. Introduction 7.2. Aircraft Model and Problem Statement 7.2.1. Longitudinal Aircraft Model Description 7.2.2. Analysis of Flight Actuator Constraints 7.2.3. Failure Modes and Modeling of Flight Actuators 7.2.4. Failure Modes and Modeling of Flight Sensor Gyros 7.2.5. Problem Statement 7.3. Fault Accommodation with Actuator Constraints 7.3.1. An Overview of the Fault Accommodation Scheme 7.3.2. Fault Accommodation within Actuator Control Authority 7.4. Fault Accommodation with Actuator Constraints and Sensorless Angular Rate 7.4.1. An Overview of the SMO-Based Fault Accommodation Scheme with Sensorless Angular Velocity 7.4.2. A SMO for Estimating Angular Rate 7.4.3. Integrated Design of SMO and Fault Accommodation 7.5. Simulation Studies 7.5.1. Simulation Environment Description 7.5.2. Simulation Scenarios 7.5.3. Results of Case I and Assessment 7.5.4. Results of Case II and Assessment 7.6. Conclusions 7.7. Notes A. Appendix for Chapter 2 B. Appendix for Chapter 3: Part 1 C. Appendix for Chapter 3: Part 2 D. Appendix for Chapter 3: Part 3 E. Appendix for Chapter 4 E.1. Experimental Parameters E.1.1. Physical Parameters E.1.2. Gains Bibliography