ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Asynchronous Machines: Basic Calculation Elements from Field Equations

دانلود کتاب ماشین‌های ناهمزمان: عناصر محاسباتی پایه از معادلات میدانی

Asynchronous Machines: Basic Calculation Elements from Field Equations

مشخصات کتاب

Asynchronous Machines: Basic Calculation Elements from Field Equations

دسته بندی: مهندسی مکانیک
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3030922839, 9783030922832 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 459 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Asynchronous Machines: Basic Calculation Elements from Field Equations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ماشین‌های ناهمزمان: عناصر محاسباتی پایه از معادلات میدانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
Chapter 1: Introduction: Basic Calculation Elements of Asynchronous Machine
	1.1 Basic Calculation Elements: Problems of Determination
		1.1.1 Circuit Loops
		1.1.2 Parameters
		1.1.3 Equivalent Circuits
		1.1.4 Voltage Equations
	1.2 Basic Calculation Elements from ``Field´´ Concept: Features of Determination
	1.3 Work Structure
	1.4 Summary
	References
Chapter 2: Electromechanical Interactions in Asynchronous Machines: Basic Physical Phenomena
	2.1 Electromechanical Energy Conversion
	2.2 Phenomenon of Magnetic Field Formation: Total Current Equation
	2.3 Phenomenon of emf Induction: Electromagnetic Induction Equation
	2.4 Phenomenon of Force Effect of Magnetic Field
	2.5 Phenomenon of Energy Transfer by Electromagnetic Field: Poynting Vector
	2.6 Summary
	References
Chapter 3: Interconnections of Basic Physical Phenomena: Kirchhoff´s Equations
	3.1 Voltage Equations: Phase and Specific System of Units
		3.1.1 Phase System of Units
		3.1.2 Specific System of Units
	3.2 Voltage Equations: Some Features
	3.3 Currents and emf of Winding: Phase and Specific Systems of Units
	3.4 Currents and emf of Winding: Transfer from One System of Units to Another
	3.5 Ohmic Resistance and Reactance: Physical Meaning
	3.6 Impedance of Winding: Transfer from One System of Units to Another
	3.7 Summary
	References
Chapter 4: Rotating Magnetic Field and Electromagnetic Torque: Practical Expressions for Calculating
	4.1 Asynchronous Machine Design: Basic Elements
	4.2 Magnetic Flux Density as Rotating Vector
	4.3 Asynchronous Machine: Principle of Operating
	4.4 Energy Conversion
	4.5 Electromagnetic Rotating Torque
		4.5.1 General Analytical Expression
		4.5.2 Practical Expressions for Calculating
			4.5.2.1 Phase System of Units
			4.5.2.2 Specific System of Units
	4.6 Summary
	References
Chapter 5: Voltage Equations Through Space Vectors
	5.1 Space Vectors
		5.1.1 Space Vector of Stator Winding Current
		5.1.2 Space Vector of Rotor Winding Current
		5.1.3 Space Vectors of Voltages and Flux Linkages
	5.2 Coordinate Transformation
	5.3 Voltage Equations
		5.3.1 Voltage Equations Through Instantaneous Phase Quantities
		5.3.2 Voltage Equations Through Space Vectors
		5.3.3 Voltage Equations in Fixed Stator System of Coordinate
	5.4 Summary
	References
Chapter 6: Voltage Equations and Equivalent Circuit of Machine: Formation of Fragments
	6.1 Voltage Equations: Steady-State Operating Mode
	6.2 Resulting emf Equations for Windings of Stator and Rotor
	6.3 ``Inductively Coupled Circuits´´ Concept: Features of Application
	6.4 Equations for Resulting Magnetic Fluxes of Windings of Stator and Rotor
	6.5 Equations for Resulting Flux Linkages of Windings of Stator and Rotor
	6.6 Resulting emf Equations Through Slot Leakage and Self- and Mutual Induction Reactances
	6.7 Resulting emf Equations for Windings of Stator and Rotor: Formation of Fragments
	6.8 Air Gap emf Equations
	6.9 Slot Leakage emf Equations of Stator and Rotor
	6.10 Fragments of Equivalent Circuit: ``Inductively Coupled Circuits´´ Concept
		6.10.1 Equivalent Circuit of Air Gap
		6.10.2 Slot Leakage Equivalent Circuit of Stator
		6.10.3 Slot Leakage Equivalent Circuit of Rotor
	6.11 Equivalent Circuit with Inductively Coupled Elements: Application of Cascade Way of Connecting
	6.12 ``Fragmentation´´ Concept: Features of Application
	6.13 Summary
	References
Chapter 7: EMF Equations of Air Gap: Self- and Mutual Induction Reactances
	7.1 Self- and Mutual Induction Reactances: Features of Determination
	7.2 Approaches to Determination of Reactances
	7.3 Flat Model of Air Gap
	7.4 Magnetic Fluxes in Air Gap
	7.5 Self- and Mutual Induction Reactances: Expressions for Calculating
	7.6 EMF Equations of Air Gap Through Referred Quantities
	7.7 Summary
	References
Chapter 8: Equivalent Circuits for Design Fragments of Machine: ``No-Load and Under-Load´´ Concept
	8.1 ``No-Load and Under-Load´´ Concept: Features of Application
		8.1.1 ``No-Load and Under-Load´´ Concept: Physical Meaning
	8.2 Current Equation for Winding of Stator
		8.2.1 Magnetizing Current
		8.2.2 Under-Load Current
		8.2.3 Under-Load Current: Determination
		8.2.4 Current Equation for Winding of Stator: Operating Mode
	8.3 Equivalent Circuits of Air Gap
		8.3.1 Magnetizing Equivalent Circuit of Air Gap
		8.3.2 Equivalent Circuit of Air Gap: Operating Mode
	8.4 Equivalent Circuits for Fragments of Stator and Rotor: Matching Quantities
		8.4.1 Slot Leakage Equivalent Circuit of Stator
		8.4.2 Slot Leakage Equivalent Circuit of Rotor
	8.5 Leakage Reactances of Stator and Rotor: Features of Determination
	8.6 ``No-Load and Under-Load´´ Concept: Way of Transformation
	8.7 Summary
	References
Chapter 9: ``No-Load and Under-Load´´ Concept: Techniques for Implementation
	9.1 Stator Winding Current Decomposition Technique
	9.2 Transfer Technique
	9.3 Reduction Technique
	9.4 Transformation Techniques: Brief Analysis
	9.5 Summary
	References
Chapter 10: Equivalent Circuit of Machine in Phase System of Units: Techniques for Construction
	10.1 Equivalent Circuit of Machine
		10.1.1 Mixed Way of Connecting: Application
		10.1.2 Cascade Way of Connecting: Application
		10.1.3 Application of Equivalent Circuits of Stator and Rotor
	10.2 Features of Applying Various Techniques
	10.3 Magnetizing Reactance of Machine
		10.3.1 Saturation Factor
		10.3.2 Approximate Saturation Accounting
		10.3.3 Equivalent Circuits of Stator and Rotor
	10.4 L-Shaped Equivalent Circuit of Machine
	10.5 Voltage Equations Through Referred Quantities: ``Inductively Coupled Circuits´´ Concept
	10.6 Determination of Parameters: ``Open Circuit and Short Circuit´´ Technique
	10.7 Summary
	References
Chapter 11: Basic Calculation Elements Using Resulting Magnetic Field: Phase System of Units
	11.1 ``Unfolded´´ Magnetizing Equivalent Circuits of Stator and Rotor
	11.2 ``Unfolded´´ Slot Leakage Equivalent Circuits of Stator and Rotor
	11.3 ``Unfolded´´ Equivalent Circuit of Stator
	11.4 ``Unfolded´´ Equivalent Circuit of Rotor
	11.5 Magnetizing and Slot Leakage Circuit Loops: ``Folded´´ Equivalent Circuit of Stator
	11.6 Magnetizing and Slot Leakage Circuit Loops: ``Folded´´ Equivalent Circuit of Rotor
	11.7 Equivalent Circuit of Machine: Voltage Equations
	11.8 Summary
	Reference
Chapter 12: Basic Calculation Elements in Specific System of Units: Techniques for Determination
	12.1 Currents and emfs of Windings of Stator and Rotor: Specific System of Units
		12.1.1 Linear Density of Surface Current and mmf
		12.1.2 Magnetic Field Intensities and Currents of Windings of Stator and Rotor
		12.1.3 Electric Field Intensities and emfs of Windings of Stator and Rotor
	12.2 Generalized emf Equations of Air Gap
	12.3 Equivalent Circuit of Air Gap: ``No-Load and Under-Load´´ Concept
	12.4 Slot Leakage Equivalent Circuits of Stator and Rotor
		12.4.1 Slot Leakage Equivalent Circuit of Stator
		12.4.2 Slot Leakage Equivalent Circuit of Rotor
	12.5 Equivalent Circuit of Machine: Voltage Equations
		12.5.1 Cascade Way of Connecting: Application
		12.5.2 Application of ``Folded´´ Equivalent Circuits of Stator and Rotor
		12.5.3 Application of ``Unfolded´´ Equivalent Circuits of Stator and Rotor
	12.6 L-Shaped Equivalent Circuit of Machine: Specific System of Units
	12.7 Voltage Equations in Specific System of Units: ``Inductively Coupled Circuits´´ Concept
	12.8 System of Relative Units
	12.9 Summary
	References
Chapter 13: Basic Calculation Elements Using Resulting Magnetic Field: Specific System of Units
	13.1 Magnetizing Circuit of Machine as Layered System
	13.2 ``Unfolded´´ Magnetizing Equivalent Circuits of Stator and Rotor
	13.3 ``Unfolded´´ Slot Leakage Equivalent Circuits of Stator and Rotor
	13.4 ``Unfolded´´ Equivalent Circuit with Mixed Connection of Elements of Stator
	13.5 ``Unfolded´´ Equivalent Circuit with Mixed Connection of Elements of Rotor
	13.6 Features of Reducing ``Unfolded´´ Equivalent Circuits to ``Folded´´ Form
	13.7 ``Unfolded´´ Equivalent Circuit with Parallel Connection of Elements of Stator
	13.8 Magnetizing and Slot Leakage Circuit Loops: ``Folded´´ Equivalent Circuit of Stator
	13.9 ``Unfolded´´ Equivalent Circuit with Parallel Connection of Elements of Rotor
	13.10 Magnetizing and Slot Leakage Circuit Loops: ``Folded´´ Equivalent Circuit of Rotor
	13.11 Equivalent Circuit of Machine
	13.12 Basic Calculation Elements: Main Provisions for Determination
		13.12.1 Application of Superposition Principle
		13.12.2 Application of ``Field´´ Concept
	13.13 Summary
	References
Chapter 14: L-Shaped Equivalent Circuits for Design Fragments of Machine
	14.1 Layered Model of Machine: Prerequisites for Application
		14.1.1 Layered Models of Stator and Rotor
	14.2 Generalized Equations of Layer: Circuit Visualization
		14.2.1 T-Shaped Equivalent Circuit of Layer
		14.2.2 L-Shaped Equivalent Circuit of Layer
	14.3 L-Shaped Equivalent Circuits of Passive Layers of Stator and Rotor
	14.4 L-Shaped Equivalent Circuits of Winding Location Area Layers of Stator and Rotor
	14.5 Summary
	References
Chapter 15: Basic Calculation Elements of Machine with Single-Cage Rotor: ``Field´´ Concept
	15.1 L-Shaped Equivalent Circuits of Stator Model Layers and Their Parameters
	15.2 Cascade Equivalent Circuits of Stator
	15.3 ``Unfolded´´ Equivalent Circuit with Mixed Connection of Elements of Stator
	15.4 ``Unfolded´´ Equivalent Circuit with Parallel Connection of Elements of Stator
	15.5 Magnetizing and Slot Leakage Circuit Loops: ``Folded´´ Equivalent Circuit of Stator
	15.6 L-Shaped Equivalent Circuits of Single-Cage Rotor Model Layers and Their Parameters
	15.7 Cascade Equivalent Circuits of Single-Cage Rotor
	15.8 ``Unfolded´´ Equivalent Circuit with Mixed Connection of Elements of Single-Cage Rotor
	15.9 ``Unfolded´´ Equivalent Circuit with Parallel Connection of Elements of Single-Cage Rotor
	15.10 Magnetizing and Slot Leakage Circuit Loops: ``Folded´´ Equivalent Circuit of Single-Cage Rotor
	15.11 Equivalent Circuit of Machine with Single-Cage Rotor: Voltage Equations
	15.12 Summary
	References
Chapter 16: Basic Calculation Elements of Machine with Wound Rotor: ``Field´´ Concept
	16.1 L-Shaped Equivalent Circuits of Wound Rotor Model Layers and Their Parameters
	16.2 Cascade Equivalent Circuits of Wound Rotor
	16.3 ``Unfolded´´ Equivalent Circuit with Mixed Connection of Elements of Wound Rotor
	16.4 ``Unfolded´´ Equivalent Circuit with Parallel Connection of Elements of Wound Rotor
	16.5 Magnetizing and Slot Leakage Circuit Loops: ``Folded´´ Equivalent Circuit of Wound Rotor
	16.6 Equivalent Circuit of Machine with Wound Rotor: Voltage Equations
	16.7 Summary
	References
Chapter 17: To Development of Improved Engineering Calculation Methods: Features of Applying Field Equations
	17.1 EMF Equations
	17.2 ``Inductively Coupled Circuits´´ Concept: EMF Equations of Stator and Rotor Windings
	17.3 Circuit Visualization of emf Equations
	17.4 Machine Equivalent Circuit: ``Inductively Coupled Circuits´´ Concept
	17.5 No-Load and Under-Load´´ Concept: Equations for emf and Current of Stator Winding
	17.6 EMF Equations and Equivalent Circuits
	17.7 Machine Equivalent Circuit: ``No-Load and Under-Load´´ Concept
	17.8 Equivalent Circuits for Fragments of emf Equations: Specific System of Units
	17.9 Machine Equivalent Circuit: Specific System of Units
	17.10 Machine Equivalent Circuit Based on Resulting Magnetic Field
	17.11 Main Stages of Constructing Machine Equivalent Circuit
		17.11.1 Applying ``No-Load and Under-Load´´ Concept
		17.11.2 Applying ``Field´´ Concept
	17.12 Summary
	Reference
Appendix A: Some Features of Asynchronous Machine Calculation Method
	First Calculation Methods
	Modern Calculation Methods
	Principles, Concepts and Main Provisions of Implementation
	Summary
Appendix B: Magnetic Field in Flat Air Gap of Machine
	Magnetic Flux Density Components
	No-Load Mode
	Under-Load Mode
	Summary
Appendix C: EMF Equations of Air Gap in Form of A: Transformation
	Air Gap emf Equations in Form of A
	Approach to Transformation of emf Equations of Air Gap
	Stator Winding Current Decomposition Technique
	Transfer Technique
	Reduction Technique
	Summary
Appendix D: Practical Technique for Constructing Equivalent Circuits of Machine
	Equivalent Circuit of Machine with Single-Winding Rotor
	Equivalent Circuit of Machine with Three-Winding Rotor
	Summary
Appendix E: ``Unfolded´´ Equivalent Circuits of Stator and Rotor: Phase System of Units
	``Unfolded´´ Magnetizing Equivalent Circuits of Stator and Rotor
	``Unfolded´´ Slot Leakage Equivalent Circuits of Stator and Rotor
	Summary
Appendix F: ``Unfolded´´ Equivalent Circuits of Stator and Rotor: Specific System of Units
	``Unfolded´´ Magnetizing Equivalent Circuits of Stator and Rotor
	``Unfolded´´ Slot Leakage Equivalent Circuits of Stator and Rotor
	Summary
Appendix G: Reducing ``Unfolded´´ Equivalent Circuits of Stator and Rotor
	Reducing ``Unfolded´´ Stator Equivalent Circuit to Equivalent Circuit with Parallel Connection of Elements
	Reducing ``Unfolded´´ Rotor Equivalent Circuit to Equivalent Circuit with Parallel Connection of Elements
	Summary
Appendix H: Calculation Elements of Conducting Layer: ``Field´´ Concept
	Generalized Equations of Conducting Layer
	L-shaped Equivalent Circuit for Layer: Analysis of Parameters
	Summary
Appendix I: Reducing ``Unfolded´´ Equivalent Circuits of Stator and Rotor: ``Field´´ Concept
	Reducing ``Unfolded´´ Stator Equivalent Circuit to Equivalent Circuit with Parallel Connection of Elements
	Reducing ``Unfolded´´ Rotor Equivalent Circuit to Equivalent Circuit with Parallel Connection of Elements
	Summary
Index




نظرات کاربران