ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب ARTIFICIAL VENTILATION a basic clinical guide.

دانلود کتاب تهویه مصنوعی یک راهنمای بالینی اساسی است.

ARTIFICIAL VENTILATION a basic clinical guide.

مشخصات کتاب

ARTIFICIAL VENTILATION a basic clinical guide.

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9783030554088, 3030554082 
ناشر: SPRINGER NATURE 
سال نشر: 2020 
تعداد صفحات: [312] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب ARTIFICIAL VENTILATION a basic clinical guide. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تهویه مصنوعی یک راهنمای بالینی اساسی است. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Foreword
Preface to the First Edition
Preface to the Second Edition
Contents
About the Author
Abbreviations
Chapter 1: A Brief History of Artificial Ventilation
	1.1 Introduction
	1.2 The Development of Basic Methods of Artificial Ventilation
	1.3 The Development of Mechanical Negative Pressure Ventilation
	1.4 The Return of Expired Air Resuscitation as Part of Cardio-Pulmonary Life Support
	1.5 The Development of Airway Management in Relation to Artificial Ventilation
		1.5.1 Introduction
		1.5.2 Driving Forces in the Development of Endotracheal Intubation
		1.5.3 The Development of Other Means of Airway Control
	1.6 The Modern Development of Positive Pressure Ventilation
	1.7 The Development of Positive Pressure Ventilation in General Anaesthesia
	1.8 The 1950s and the Start of Intensive Care Units
		1.8.1 The Use of the Self-Reforming Bag in Emergency Medicine
	1.9 The Development of Portable Mechanical Ventilators
		1.9.1 Early Development
		1.9.2 The French RPR Ventilator
		1.9.3 The Development of Portable Ventilators After 1960
		1.9.4 The Invention of the Demand Valve: Interactive Ventilation Introduced into the Prehospital Emergency Setting
	1.10 Adoption of the Use of Portable Ventilators
	1.11 Conclusions
	Suggestions for Further Reading
Chapter 2: The Structure of the Airways and Lungs
	2.1 Introduction
	2.2 The Respiratory Tree: An Overview
		2.2.1 Dead Space
	2.3 Passive and Active Airways
	2.4 The Alveoli
	2.5 Key Points of Respiratory Anatomy Relevant to Artificial Ventilation
		2.5.1 The Nose
			2.5.1.1 Key Points Relative to Airway and Ventilation Management
		2.5.2 The Mouth (Oral Cavity)
			2.5.2.1 Key Points
		2.5.3 The Pharynx
			2.5.3.1 Key Points
		2.5.4 The Larynx
			2.5.4.1 Key Points
		2.5.5 The Trachea
			2.5.5.1 Key Points
		2.5.6 The Upper and Lower Bronchi
			2.5.6.1 The Main Bronchi (1st to 4th Generations)
			2.5.6.2 The Small Bronchi (5th to 11th Generations)
			2.5.6.3 Bronchioles (12th to 16th Generation)
			2.5.6.4 Respiratory Bronchioles (17th to 19th Generation)
			2.5.6.5 The Alveoli
	2.6 Conclusions
	Suggestions for Further Reading
Chapter 3: How the Lungs Work: Mechanics and Gas Exchange with the Blood
	3.1 Introduction and Definitions
	3.2 The Mechanics of Breathing
		3.2.1 The Normal Ventilation of the Lungs
		3.2.2 Airway Resistance and Lung Compliance
			3.2.2.1 Airway Resistance
			3.2.2.2 Compliance
		3.2.3 Lung Volumes and Capacities
			3.2.3.1 Tidal Volume
			3.2.3.2 Functional Residual Capacity
	3.3 The Regulation of Breathing: An Overview
		3.3.1 Inspiration and Expiration Control
		3.3.2 The Neural Control of Breathing
		3.3.3 Voluntary Override of Breathing
		3.3.4 Chemical Control of Breathing
	3.4 Respiration and Gas Exchange with the Blood
		3.4.1 Definitions
		3.4.2 Gas Exchange in the Alveoli
			3.4.2.1 Composition of Gas in the Alveoli
			3.4.2.2 How Ventilation Affects the Concentration of Gases in the Alveoli: The Alveolar Air Equation
			3.4.2.3 The Ventilation Perfusion Ratio
	3.5 Oxygen and Carbon Dioxide Transport in the Blood
		3.5.1 The Haemoglobin Dissociation Curve
	3.6 Internal (Cellular) Respiration
	3.7 Conclusions
	Suggestions for Further Reading
Chapter 4: Respiratory Failure
	4.1 Introduction
	4.2 Definition of Respiratory Failure
		4.2.1 Type 1 Respiratory Failure
		4.2.2 Type 2 Respiratory Failure
		4.2.3 Acute Respiratory Failure
	4.3 Tissue Hypoxia
		4.3.1 Vulnerability of Various Body Tissues to Hypoxia
	4.4 Causes of Respiratory Failure
		4.4.1 Pathophysiology of Type 1 and Type 2 Respiratory Failure
	4.5 Consequences of Acute Respiratory Failure
	4.6 Acute on Chronic Respiratory Failure
	4.7 Recognising Respiratory Failure
		4.7.1 Introduction
		4.7.2 Assessment of Breathing: General Considerations
		4.7.3 Assessment of Conscious Level
		4.7.4 Airway
		4.7.5 Primary Breathing Assessment
		4.7.6 Secondary Patient Assessment
			4.7.6.1 Hyper – and Hypo- Ventilation
	4.8 Aids to the Clinical Assessment of Respiratory Failure
		4.8.1 Auscultation
		4.8.2 Pulse Oximetry
			4.8.2.1 Principle of Operation
		4.8.3 Measurement of End Tidal CO2 (Capnography)
			4.8.3.1 Waveform Analysis in Capnography
			4.8.3.2 Uses of Capnography
	4.9 Conclusions
	Suggestions for Further Reading
Chapter 5: The Management of Respiratory Failure: Airway Management and Manual Methods of Artificial Ventilation
	5.1 Introduction
		5.1.1 The Degree of Respiratory Failure
		5.1.2 Equipment
		5.1.3 Airway: Ventilation Management
	5.2 Management of the Airway During Non-mechanical Artificial Ventilation: General Considerations
		5.2.1 Airway Obstruction
			5.2.1.1 Causes of Airway Obstruction
			5.2.1.2 Recognition of Airway Obstruction
	5.3 Basic Airway Management
		5.3.1 Head Tilt and Chin Lift
		5.3.2 Jaw Thrust
		5.3.3 Airway Management in Patients with Suspected Cervical Spine Injury
		5.3.4 Aids to Positional Airway Management Techniques
			5.3.4.1 Suction
			5.3.4.2 Oropharyngeal Airways
			5.3.4.3 Nasopharyngeal Airways
	5.4 Advanced Airway Management
		5.4.1 Introduction
		5.4.2 Which Airway to Use?
		5.4.3 The Laryngeal Mask Airway
			5.4.3.1 Potential Problems with Insertion and Function of the LMA
			5.4.3.2 Contraindications to the Use of an LMA
		5.4.4 Endotracheal Intubation
			5.4.4.1 Standard Equipment Checks
			5.4.4.2 Adult Intubation
			5.4.4.3 Overcoming Difficulties During Intubation
	5.5 Oxygen Therapy for Partial Respiratory Failure
	5.6 Techniques for Non-mechanical Methods of Artificial Ventilation
		5.6.1 Expired Air Ventilation
			5.6.1.1 Delivering Mouth to Mouth Ventilation
			5.6.1.2 The Pocket Mask
		5.6.2 The Bag–Valve Mask Device
			5.6.2.1 Development
			5.6.2.2 Construction of the Bag–Valve-Mask
			5.6.2.3 Non-return Valve and pharyngeal mask
			5.6.2.4 Oxygen Enrichment
		5.6.3 Using the Bag Valve Device
			5.6.3.1 How Much and How Fast to Squeeze the Bag?
			5.6.3.2 One and Two Person Ventilation with the Bag–Valve-Mask
		5.6.4 Perceptions of the Safety and Effectiveness of Bag Valve Mask Ventilation
		5.6.5 Problems Associated with the Use of the Bag–Valve—Mask Device
			5.6.5.1 Gas Wastage and Hypoventilation
			5.6.5.2 Hyperventilation
			5.6.5.3 Excessive Inspiration Pressure
			5.6.5.4 Haemodynamic Effects of Increased Intra Thoracic Pressure When Using a Bag Valve Device
		5.6.6 Evaluating Ventilation Using a Bag Valve Device
	5.7 Conclusions
	Suggestions for Further Reading
Chapter 6: Basic Principles of Mechanical Ventilation
	6.1 Introduction
	6.2 The Adoption of Mechanical Ventilators in Emergency Care
		6.2.1 Introduction
		6.2.2 Why Did Mechanical Artificial Ventilation Become So Important in the Mid Twentieth Century?
		6.2.3 Divergence Between Hospital and Emergency Ventilators
	6.3 Artificial Ventilation of the Lungs: Terminology
		6.3.1 Intermittent Positive Pressure Ventilation
		6.3.2 Inspiratory and Expiratory Phases of IPPV
		6.3.3 I:E Ratio
		6.3.4 Patient Circuit
		6.3.5 Patient Circuit Filter
		6.3.6 Tidal Volume
		6.3.7 Frequency of Ventilation
		6.3.8 Minute Volume
		6.3.9 Dead Space
			6.3.9.1 Anatomical Deadspace
			6.3.9.2 Physiological Deadspace
		6.3.10 Alveolar Ventilation
		6.3.11 FiO2
		6.3.12 Inspiratory Pressure
		6.3.13 Peak Inflation Pressure
		6.3.14 Pressure Cascade Through the Airway
		6.3.15 Hyperventilation
			6.3.15.1 Barotrauma
			6.3.15.2 Volutrauma
		6.3.16 Hypoventilation
		6.3.17 Positive End–Expiratory Pressure
		6.3.18 Air Mix
		6.3.19 Reducing Valve
		6.3.20 Manometer
		6.3.21 CMV/Demand
		6.3.22 Oxygen Cylinders
	6.4 How Mechanical Ventilators Work
		6.4.1 The Respiratory Cycle: The Essential Function of a Mechanical Ventilator
		6.4.2 Volume Generators
		6.4.3 Pressure Generators
		6.4.4 Cycling Between the I and E Phase
			6.4.4.1 Time Cycling
			6.4.4.2 Volume Cycling
			6.4.4.3 Pressure Cycling
			6.4.4.4 Expiratory Phase
			6.4.4.5 Cycling from the Expiratory to the Inspiratory Phase
		6.4.5 Triggering: Patient Activation of the Inspiratory Phase
			6.4.5.1 Why Is Triggering Important?
	6.5 Modes of Positive Pressure Ventilation
		6.5.1 Ventilation Modes Classified According to the Work of Breathing
		6.5.2 The Spectrum of Modes of Ventilation
			6.5.2.1 Controlled Mandatory Ventilation (CMV)
			6.5.2.2 Assisted Controlled Ventilation (ACV)
			6.5.2.3 Synchronised Mandatory Ventilation (Mixed Mode Ventilation)
				Intermittent Mandatory Ventilation
				Synchronised Intermittent Mandatory Ventilation (SIMV)
				Synchronised Mandatory Minute Volume (SMMV)
				The Pneupac SMMV Mode
			6.5.2.4 Assisted Spontaneous Breathing (ASB)
			6.5.2.5 Spontaneous Breathing Support
		6.5.3 Positive End–Expiratory Ventilation (PEEP)
		6.5.4 Continuous Positive Airway Pressure (CPAP)
		6.5.5 Bilevel Positive Airway Pressure (BiPAP)
	6.6 Conclusions
	Suggestions for Further Reading
Chapter 7: Portable Mechanical Ventilators
	7.1 Introduction
	7.2 Classification of Portable Ventilators
		7.2.1 Resuscitation Ventilators
		7.2.2 Emergency Ventilators
		7.2.3 Transport Ventilators
	7.3 Technical Aspects of Portable Ventilators and Ancillary Equipment
		7.3.1 Power Source
		7.3.2 From the Cylinder to the Patient: The Pressure Cascade of Portable Ventilation
			7.3.2.1 Oxygen Cylinders
			7.3.2.2 Reducing Valve
			7.3.2.3 High Pressure Hose and Connector
			7.3.2.4 Connection to the Ventilator and Internal Regulation
	7.4 The Basic Controls of a Portable Ventilator
		7.4.1 Tidal Volume
		7.4.2 Frequency Control
		7.4.3 Combined Tidal Volume and Frequency Controls
		7.4.4 I:E Ratio
			7.4.4.1 Variable I:E Ratio
		7.4.5 On/off and CMV/Demand Controls
			7.4.5.1 Manual or Automatic Ventilation
			7.4.5.2 Manual Override
		7.4.6 Airmix Control
		7.4.7 Blow-Off Pressure Control
	7.5 Monitoring on Portable Ventilators
		7.5.1 Introduction
		7.5.2 Visual Monitoring and Alarms
			7.5.2.1 High Pressure Gas Supply
			7.5.2.2 High Patient Inspiratory Pressure Alarm
			7.5.2.3 Low Patient Inspiratory Pressure Alarm
			7.5.2.4 Patient Triggering Indicator
			7.5.2.5 Manometer
			7.5.2.6 Battery Indicator
	7.6 Audible Alarms
	7.7 Using a Portable Ventilator: Essential Checks Before Starting Ventilation
		7.7.1 Introduction
		7.7.2 Operator’s Handbook
			7.7.2.1 Pneumatic Power Checks
			7.7.2.2 Ventilator Controls
	7.8 Using a Portable Ventilator in an Emergency: Practical Steps
		7.8.1 Introduction
		7.8.2 Commencing Artificial Ventilation
	7.9 Using Portable Ventilators in Emergencies: The Evidence Base
		7.9.1 The Need for More Studies on Automatic Ventilators
		7.9.2 Bag-Valve Ventilation Compared with Automatic Ventilation
	7.10 Conclusions
	Suggestions for Further Reading
Chapter 8: Managing Ventilation During Transport
	8.1 Introduction
	8.2 Transport Ventilation by Non-Specialists
	8.3 Managing Transport Ventilation
		8.3.1 Guidelines and Training
		8.3.2 Stages in the Management of Transport Ventilation
		8.3.3 The Logistics of Transport Ventilation
		8.3.4 Monitoring of Artificial Ventilation During Transport
			8.3.4.1 Clinical Observation
			8.3.4.2 Specific Ventilator Monitoring
	8.4 Potential Problems During Transportation of Patients Who Are Being Ventilated
		8.4.1 Causes of Adverse Effects
	8.5 Conclusions
	Suggestions for Further Reading
Chapter 9: Paediatric Artificial Ventilation for the Non-Specialist
	9.1 Introduction
	9.2 Definitions
	9.3 Overview of the Differences Between Adult and Paediatric Respiratory Anatomy and Physiology
		9.3.1 Anatomical Differences
		9.3.2 Physiological Differences
			9.3.2.1 Age-Related Differences in Physical Vital Signs
			9.3.2.2 Cardio-Respiratory Physiological Changes at Birth
			9.3.2.3 Lungs
			9.3.2.4 Tidal Volume
			9.3.2.5 Anatomical Dead Space
			9.3.2.6 Functional Residual Capacity
	9.4 Respiratory Failure and Cardiac Arrest in Neonates and Infants
		9.4.1 Causes of Respiratory Failure in Infants and Children
		9.4.2 Recognition of Paediatric Respiratory Failure: Primary and Secondary Survey
			9.4.2.1 Airway
			9.4.2.2 Breathing
			9.4.2.3 Other Systemic Indicators of Respiratory Insufficiency
	9.5 Management of Airway and Ventilation in Paediatric Respiratory Arrest
		9.5.1 Upper Airway Obstruction
		9.5.2 Securing the Airway
			9.5.2.1 Size of the Tube
	9.6 Intermittent Positive Pressure Ventilation in Neonates, Infants and Children
		9.6.1 Bag Valve Mask Ventilation
			9.6.1.1 Paediatric Life Support
		9.6.2 Mechanical Ventilation
			9.6.2.1 Non-Pneumatic Paediatric Ventilators
	9.7 Paediatric Continuous Positive Airway Pressure
		9.7.1 Delivered Oxygen Concentration in Paediatric Ventilation
	9.8 Conclusions
	Suggestions for Further Reading
Chapter 10: Artificial Ventilation in Difficult and Extreme Environments
	10.1 Introduction
	10.2 Artificial Ventilation Following a Disaster
		10.2.1 What Is a Disaster?
		10.2.2 Effects of a Disaster on Medical Care
		10.2.3 Emergency Ventilation Where Hospital Facilities Are Disrupted
			10.2.3.1 Power Availability
			10.2.3.2 Oxygen Availability
			10.2.3.3 Problems of Maintenance and Servicing of Ventilators in Remote Locations
		10.2.4 Factors Which Affect the Choice of Ventilator for Use in Disaster Settings
	10.3 Ventilation in Toxic Environments and Following Exposure to Products of Combustion
		10.3.1 Introduction
		10.3.2 Organisation of Emergency Medical Responses Following a Chemical Agent Release: HAZMAT Zones
		10.3.3 Toxic Respiratory Failure: An Overview
			10.3.3.1 Irritant Effects on the Respiratory System
			10.3.3.2 Corrosive Effects
			10.3.3.3 Effects on the Lower airways and Alveoli
		10.3.4 Managing Respiratory Failure in a Toxic Contaminated Zone
			10.3.4.1 Protection of Responders
			10.3.4.2 Airway and Ventilation Options in a Toxic Environment
				Airway
				Ventilation
	10.4 Effects of Inhalation of the Products of Combustion
		10.4.1 Introduction
		10.4.2 Asphyxiant Gases
		10.4.3 Irritant Gases
		10.4.4 Ventilation for Carbon Monoxide Poisoning
	10.5 Mechanical Artificial Ventilation in Hyper- and Hypobaric Environments
		10.5.1 Hyperbaric Oxygen Chambers
		10.5.2 Decompression Chambers
		10.5.3 Problems in Ventilating in a High Pressure Environment
		10.5.4 Artificial Ventilation in Hypobaric Environments
			10.5.4.1 Physiological Considerations for Hypobaric Ventilation
			10.5.4.2 The Performance of Ventilators Inside an Aircraft
	10.6 Conclusions
	Suggestions for Further Reading
Chapter 11: Artificial Ventilation in the Intensive Care Unit: An Overview
	11.1 Introduction
	11.2 What Is Intensive Care?
	11.3 Respiratory Intensive Care
		11.3.1 Understanding the Modes of Ventilation on an ICU Ventilator
		11.3.2 A Comparison of ICU and Emergency Ventilation Modes
		11.3.3 Volume and Pressure Control of Ventilation: Definitions
		11.3.4 Volume Controlled Modes
		11.3.5 Pressure Controlled Modes
			11.3.5.1 Advantages of Pressure Control Ventilation
			11.3.5.2 Disadvantages of Pressure Control Ventilation
	11.4 Commonly Used Supportive Ventilation Modes in Hospital Practice
	11.5 Non-Ventilatory Airway Pressure Support: CPAP and Bi-PAP
	11.6 An Overview of Ventilators Used in Intensive Care
		11.6.1 Features of ICU Ventilators: The Development Over the Past 40 Years
		11.6.2 The Servo 900C
		11.6.3 Hamilton C6
		11.6.4 Hersill Vitae 40
	11.7 Acute Lung Injury and Acute Respiratory Distress Syndrome
		11.7.1 Introduction
		11.7.2 Definitions
		11.7.3 Causes
		11.7.4 How ARDS Develops: The Key Points
			11.7.4.1 Genetic Factors
			11.7.4.2 Pathophysiology
		11.7.5 Clinical Presentation
		11.7.6 Ventilation Strategies
		11.7.7 COVID19: A Special Case of Artificial Ventilation for ARDS
	11.8 Conclusions
	Suggestions for Further Reading
Chapter 12: Mass Ventilation
	12.1 Introduction
	12.2 Mass Ventilation: The Scale of the Problem
	12.3 Who Should Be Involved in Mass Ventilation?
		12.3.1 Intensive Care Physicians and Nurses, Anaesthesiologists, Respiratory Therapists
		12.3.2 Emergency and Other Medical and Paramedical Personnel Working Outside the Hospital Environment in the Ambulance Service
		12.3.3 Paramedical Personnel
		12.3.4 Nursing Personnel
	12.4 Providing Mass Ventilation: Guidelines and Practicalities
		12.4.1 The United States
		12.4.2 France
		12.4.3 United Kingdom
	12.5 Conclusions
	Suggestions for Further Reading
Chapter 13: Conclusions
	13.1 Artificial Ventilation: Past Present and Future
Appendix A: The 2015 ILCOR Resuscitation Guidelines: An Analysis of the Implications of Recommendations for Ventilation Management
	A.1 Introduction
	A.2 Publication of the Guidelines
	A.3 The Basis of the Evidence
		A.3.1 Presentation of Evidence Levels and the Wording of the Guidelines
	A.4 ERC and AHA 2015: The Main Changes from the 2010 Guidelines for Airway and Ventilation Management
		A.4.1 Basic Adult Life Support
		A.4.2 Adult Advanced Life Support
	A.5 Paediatric Basic and Advanced Life Support
		A.5.1 AHA Paediatric Guidelines
		A.5.2 ERC Paediatric Guidelines
	A.6 Monitoring of Breathing and Ventilation
	A.7 Conclusions
Appendix B: Comparing and Selecting Portable Emergency and Transport Ventilators
	B.1 Introduction
	B.2 Classes of Available Portable Mechanical Ventilators and Examples
		B.2.1 Resuscitation Ventilators (Single Tidal Volume/Frequency Control, Pneumatically Powered, May Be Either Volume or Pressure Generators)
		B.2.2 Emergency/Immediate Transport Ventilators (Separate Tidal Volume and Frequency Controls, Time Cycled, Volume Preset, Pneumatically Powered)
	B.3 Choosing a Portable Ventilator
		B.3.1 Factors Determining the Choice of Ventilator. These Include the Following:
		B.3.2 Who Should Select the Ventilator?
		B.3.3 Gathering Information Before Buying
		B.3.4 Testing and Commissioning a Ventilator
		B.3.5 Training and Use
Appendix C: Technical Specifications of Selected Resuscitation Ventilators
Appendix D: Technical Specifications for Selected Emergency/Transport Ventilators
Appendix E: Ventilation Modes Used in the Intensive Care Unit
	E.1 Volume Assist Control (or Assisted Controlled Mandatory Ventilation (ACMV))
	E.2 Intermittent Mandatory Ventilation (IMV) and Synchronised Intermittent Mandatory Ventilation (SIMV)
	E.3 Pressure Support Ventilation
		E.3.1 Advantages of Pressure Support Ventilation
		E.3.2 Disadvantages of Pressure Support Ventilation
	E.4 Other Modes of Ventilation Used in the ICU
		E.4.1 Airway Pressure Release Ventilation (APRV)
		E.4.2 Proportional Assist Ventilation (PAV)
		E.4.3 Dual Breath Control
			E.4.3.1 Intrabreath Control
			E.4.3.2 Interbreath Control
		E.4.4 Pressure Regulated Volume Control (PRVC)
		E.4.5 Automode
		E.4.6 Volume Support
		E.4.7 Adaptive Support Ventilation
Index




نظرات کاربران