دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Fickelscherer. Richard J.
سری:
ISBN (شابک) : 9781119825890
ناشر: Wiley
سال نشر: 2024
تعداد صفحات: 436
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence in Process Fault Diagnosis: Methods for Plant Surveillance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی در تشخیص خطای فرآیند: روشهایی برای نظارت بر گیاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
COVER TITLE PAGE COPYRIGHT PAGE DEDICATION PAGE CONTENTS LIST OF CONTRIBUTORS FOREWORD PREFACE ACKNOWLEDGMENTS CHAPTER 1 MOTIVATIONS FOR AUTOMATING PROCESS FAULT ANALYSIS OVERVIEW CHAPTER HIGHLIGHTS 1.1 INTRODUCTION 1.2 THE CHANGING ROLE OF THE PROCESS OPERATORS IN PLANT OPERATIONS 1.3 TRADITIONAL METHODS FOR PERFORMING PROCESS FAULT MANAGEMENT 1.4 LIMITATIONS OF HUMAN OPERATORS IN PERFORMING PROCESS FAULT MANAGEMENT 1.5 THE ROLE OF AUTOMATED PROCESS FAULT ANALYSIS REFERENCES CHAPTER 2 VARIOUS PROCESS FAULT DIAGNOSTIC METHODOLOGIES OVERVIEW CHAPTER HIGHLIGHTS 2.1 INTRODUCTION 2.2 VARIOUS ALTERNATIVE DIAGNOSTIC STRATEGIES OVERVIEW 2.2.1 Fault Tree Analysis 2.2.2 Alarm Analysis 2.2.3 Decision Tables 2.2.4 Sign-Directed Graphs 2.2.5 History-Based Statistical Methods 2.2.6 Diagnostic Strategies Based upon Qualitative Models 2.2.7 Diagnostic Strategies Based upon Quantitative Models 2.2.8 Artificial Neural Network Strategies 2.2.9 Artificial Immune System Strategies 2.2.10 Knowledge-Based System Strategies 2.2.11 Role of the Process Operators in Automated Fault Detection and Diagnosis 2.3 DIAGNOSTIC METHODOLOGY CHOICE CONCLUSIONS REFERENCES CHAPTER 2.A FAILURE MODES AND EFFECTS ANALYSIS 2.A.1 Introduction 2.A.2 FMEA Procedure 2.A.3 Conclusion CHAPTER 3 ALARM MANAGEMENT AND FAULT DETECTION CHAPTER HIGHLIGHTS ABBREVIATIONS USED 3.1 INTRODUCTION 3.2 APPLICABLE DEFINITIONS AND GUIDELINES 3.3 THE ALARM MANAGEMENT LIFE CYCLE 3.3.1 Introduction 3.3.2 Life Cycle Model 3.3.3 Alarm Philosophy 3.3.4 Alarm Identification 3.3.5 Alarm Rationalization 3.3.6 Alarm Design 3.3.7 Implementation 3.3.8 Operation 3.3.9 Maintenance 3.3.10 Monitoring and Assessment 3.3.11 Management of Change 3.3.12 Audit 3.4 GENERATION OF DIAGNOSTIC INFORMATION 3.4.1 Introduction 3.4.2 As Part of the Basic Process Control System 3.4.3 As a Separate Application 3.5 PRESENTATION OF THE DIAGNOSTIC INFORMATION 3.5.1 Introduction 3.5.2 As Part of the Alarm Text 3.5.3 As a Link to the Diagnostic Application 3.5.4 As an Indication in the HMI 3.6 INFORMATION RATES 3.6.1 Introduction 3.6.2 Nuisance Alarms REFERENCES CHAPTER 4 OPERATOR PERFORMANCE: SIMULATION AND AUTOMATION CHAPTER HIGHLIGHTS 4.1 BACKGROUND 4.2 AUTOMATION 4.2.1 Smart Alarming 4.2.2 Safe Park Applications 4.3 SIMULATION 4.4 RESEARCH 4.4.1 Method 4.4.2 Testing and Results 4.4.3 Operator Performance 4.4.4 Implications 4.5 AI INTEGRATION 4.5.1 Pattern Recognition 4.5.2 Training 4.6 CASE STUDY: TURBO EXPANDERS OVER-SPEED 4.7 HUMAN-CENTERED AI 4.7.1 Case Study: Boeing 737 MAX 4.7.2 AI Mental Models REFERENCES CHAPTER 5 AI AND ALARM ANALYTICS FOR FAILURE ANALYSIS AND PREVENTION OVERVIEW 5.1 INTRODUCTION 5.2 POST-ALARM ASSESSMENT AND ANALYSIS 5.2.1 Alarm Configuration Database 5.3 REAL-TIME ALARM ACTIVITY DATABASE AND OPERATOR ACTION JOURNAL 5.4 PRE-ALARM ASSESSMENT AND ANALYSIS 5.5 UTILIZING ALARM ASSESSMENT INFORMATION 5.6 EXAMINING THE ALARM SYSTEM TO RESOLVE FAILURES ON A WIDER SCALE 5.6.1 Sequence of Events (SOE) Module 5.6.2 Use of First Principles to Determine Likely Root Causes 5.6.3 Use of Simple Data Analytics to Identify Redundant/Repetitive Alarms 5.6.4 Use of Data Analytics to Identify Problem Areas with Upsets Related to Transitions, out of Service, and out of Suppression States 5.6.5 Use of Data Analytics to Identify Problem Areas with Chronic Alarm Shelving 5.7 EMERGING METHODS OF ALARM ANALYSIS 5.7.1 Use of Advanced Modeling Methods to Determine Remediation 5.7.2 Use of Automated Machine Learning to Determine Causes and Assess Interventions 5.8 DEEP REINFORCEMENT LEARNING FOR ALARMING AND FAILURE ASSESSMENT 5.9 SOME TYPICAL AI AND MACHINE LEARNING EXAMPLES FOR FURTHER STUDY 5.9.1 Boolean Logic Tables 5.9.2 Statistical Regression and Variance 5.9.3 Artificial Neural Networks (ANNs) 5.9.4 Expert Systems 5.9.5 Sensitivity Analysis 5.9.6 Fuzzy Logic 5.9.7 Bayesian Networks 5.9.8 Genetic Algorithms 5.9.9 SmartSignal, PRiSM (AVEVA), and PPCL 5.9.10 Control System Effectiveness Study 5.10 WRAP-UP CHAPTER 5.A PROCESS STATE TRANSITION LOGIC EMPLOYED BY THE ORIGINAL FMC FALCONEER KBS 5.A.1 INTRODUCTION 5.A.2 POSSIBLE PROCESS OPERATING STATES 5.A.3 SIGNIFICANCE OF PROCESS STATE IDENTIFICATION AND TRANSITION DETECTION 5.A.4 METHODOLOGY FOR DETERMINING PROCESS STATE IDENTIFICATION 5.A.4.1 Present Value States of all Key Sensor Data 5.A.4.2 Predicted Next Value States of all Key Sensor Data 5.A.5 PROCESS STATE IDENTIFICATION AND TRANSITION LOGIC PSEUDO-CODE 5.A.5.1 Attributes of the Current Data Vector 5.A.5.2 Method that is Applied to Each Updated Data Vector 5.A.6 SUMMARY APPENDIX 5.A REFERENCES CHAPTER 5.B PROCESS STATE TRANSITION LOGIC AND ITS ROUTINE USE IN FALCONEER™ IV 5.B.1 TEMPORAL REASONING PHILOSOPHY 5.B.2 INTRODUCTION 5.B.3 STATE IDENTIFICATION ANALYSIS CURRENTLY USED IN FALCONEER™ IV 5.B.4 STATE IDENTIFICATION ANALYSIS SUMMARY APPENDIX 5.B REFERENCES CHAPTER 6 PROCESS FAULT DETECTION BASED ON TIME-EXPLICIT KIVIAT DIAGRAM OVERVIEW CHAPTER HIGHLIGHTS 6.1 INTRODUCTION 6.2 TIME-EXPLICIT KIVIAT DIAGRAM 6.3 FAULT DETECTION BASED ON THE TIME-EXPLICIT KIVIAT DIAGRAM 6.4 CONTINUOUS PROCESSES 6.5 BATCH PROCESSES 6.6 PERIODIC PROCESSES 6.7 CASE STUDIES 6.8 CONTINUOUS PROCESSES 6.9 BATCH PROCESSES 6.10 PERIODIC PROCESSES 6.11 CONCLUSIONS ACKNOWLEDGMENT REFERENCES ACKNOWLEDGMENTS APPENDIX 6.A REFERENCES CHAPTER 6.A VIRTUAL STATISTICAL PROCESS CONTROL ANALYSIS 6.A.1 OVERVIEW 6.A.2 INTRODUCTION 6.A.3 EWMA CALCULATIONS AND SPECIFIC VIRTUAL SPC ANALYSIS CONFIGURATIONS 6.A.3.1 Controlled Variables 6.A.3.2 Uncontrolled Variables and Performance Equation Variables 6.A.4 VIRTUAL SPC ALARM TRIGGER SUMMARY 6.A.5 VIRTUAL SPC ANALYSIS CONCLUSIONS ACKNOWLEDGMENTS APPENDIX 6.A REFERENCES CHAPTER 7 SMART MANUFACTURING AND REAL-TIME CHEMICAL PROCESS HEALTH MONITORING AND DIAGNOSTIC LOCALIZATION CHAPTER HIGHLIGHTS 7.1 INTRODUCTION TO PROCESS OPERATIONAL HEALTH MODELING 7.2 DIAGNOSTIC LOCALIZATION – KEY CONCEPTS 7.2.1 Qualitative Modeling and Symptomaticand Topographic Search 7.2.2 Functional Representation as a Qualitative Modeling Construct 7.2.3 Causal Link Assessment for Combined Topographical and Symptomatic Assessment 7.3 TIME 7.3.1 Discretization and Single Time-Step Analysis 7.3.2 Dynamics in an Individual Functional Representation 7.3.3 Time Window and Feature Extraction 7.4 THE WORKFLOW OF DIAGNOSTIC LOCALIZATION 7.5 DL-CLA USE CASE IMPLEMENTATION: NOVA CHEMICAL ETHYLENE SPLITTER 7.5.1 CPP Generation 7.5.2 CPP Interpretation 7.5.3 Diagnostic Localization 7.6 ANALYZING POTENTIAL MALFUNCTIONS OVER TIME 7.7 ANALYSIS OF VARIOUS OPERATIONAL SCENARIOS 7.7.1 Event Manifestation, Sensor Reliability/Sensor Malfunctions 7.7.2 Hypothetical and Function-Only Devices 7.7.3 Unaccounted Malfunctions, Graceful Degradation, Multiple Malfunctions, Etc. 7.7.4 Sensor Availability and Reliability 7.7.5 Process Complexity 7.8 DL-CLA INTEGRATION WITH SMART MANUFACTURING (SM) 7.9 AN FR MODEL LIBRARY 7.9.1 Reusing FR Device Models 7.9.2 Complex FR Models 7.9.3 Analysis and Results 7.10 CONCLUSIONS REFERENCES CHAPTER 8 OPTIMAL QUANTITATIVE MODEL-BASED PROCESS FAULT DIAGNOSIS OVERVIEW CHAPTER HIGHLIGHTS 8.1 INTRODUCTION 8.2 PROCESS FAULT ANALYSIS CONCEPT TERMINOLOGY 8.3 MOME QUANTITATIVE MODELS OVERVIEW 8.4 MOME QUANTITATIVE MODEL DIAGNOSTIC STRATEGY 8.5 MOME SV&PFA DIAGNOSTIC RULES’ LOGIC COMPILER MOTIVATIONS 8.6 MOME FUZZY LOGIC ALGORITHM OVERVIEW 8.6.1 MOME Fuzzy Logic Algorithm Details 8.6.2 Single Fault Fuzzy Logic SV&PFA Diagnostic Rule 8.6.3 Multiple Fault Fuzzy Logic SV&PFA Diagnostic Rule 8.7 SUMMARY OF THE MOME DIAGNOSTIC STRATEGY 8.8 ACTUAL PROCESS SYSTEM KBS APPLICATION PERFORMANCE RESULTS 8.9 CONCLUSIONS ACKNOWLEDGMENTS REFERENCES CHAPTER 8.A FALCONEERTM IV FUZZY LOGIC ALGORITHM PSEUDO-CODE 8.A.1 Introduction 8.A.2 Single and Non-Interactive Multiple Faults 8.A.3 Pairs of Interactive Multiple Faults 8.A.4 Summary CHAPTER 8.B MOME CONCLUSIONS 8.B.1 Overview 8.B.2 Summary of the Mome Diagnostic Strategy 8.B.3 Falconeer™ IV KBS Application Project Procedure 8.B.4 Optimal Automated Process Fault Analysis Conclusions CHAPTER 9 FAULT DETECTION USING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING CHAPTER HIGHLIGHTS ABBREVIATIONS USED 9.1 INTRODUCTION 9.2 ARTIFICIAL INTELLIGENCE 9.3 MACHINE LEARNING 9.4 ENGINEERED FEATURES 9.4.1 Fast Fourier Transformation and Signal Processing 9.4.2 Principal Component Analysis 9.5 MACHINE LEARNING ALGORITHMS 9.5.1 Decision Trees and Ensemble Trees 9.5.2 Artificial Neural Networks 9.5.3 Bayesian Networks 9.5.4 High-Density Clustering 9.5.5 Large Language Models and the Future AI-Driven Factories REFERENCES CHAPTER 10 KNOWLEDGE-BASED SYSTEMS CHAPTER HIGHLIGHTS ABBREVIATIONS USED 10.1 INTRODUCTION 10.2 KNOWLEDGE 10.2.1 Definition 10.2.2 Mathematical – Physical Contextualization 10.2.3 Procedural Knowledge 10.2.4 Heuristic Knowledge 10.2.5 Topological Knowledge 10.3 INFORMATION REQUIRED FOR DIAGNOSIS 10.3.1 Introduction 10.3.2 Association 10.3.3 State and State Transition 10.4 KNOWLEDGE REPRESENTATION 10.4.1 Introduction 10.4.2 Mathematical 10.4.3 Linguistic 10.4.4 Graphical 10.4.5 Conclusion 10.5 MAINTAINING, UPDATING, AND EXTENDING KNOWLEDGE 10.5.1 Introduction 10.5.2 Progressing Insight 10.5.3 Software as a Knowledge-Based System 10.5.4 A Database as a Knowledge-Based System 10.5.5 Search Engines 10.5.6 Online Encyclopedia 10.5.7 Learning 10.6 EXPERT SYSTEMS 10.6.1 Introduction 10.6.2 Inference Engine 10.6.3 Generic – Specific 10.6.4 Interactive – Real-Time 10.6.5 Polling 10.6.6 Conclusions 10.6.7 Documentation 10.7 DIGITIZATION, DIGITALIZATION, DIGITAL TRANSFORMATION, AND DIGITAL TWINS 10.7.1 Digitizing Information 10.7.2 Digitalization 10.7.3 Digital Transformation 10.7.4 Digital Twins 10.8 FAULT DIAGNOSIS WITH KNOWLEDGE-BASED SYSTEMS 10.8.1 Introduction 10.8.2 Elimination 10.8.3 Inductive (Forward) Reasoning 10.8.4 Deductive (Backward) Reasoning 10.8.5 Conclusions 10.9 GRAPHICAL REPRESENTATION OF FAULT DIAGNOSIS 10.9.1 Introduction 10.9.2 Fault Trees 10.9.3 FMEA 10.9.4 Bowtie Analysis 10.9.5 Complex Event Processing 10.10 CONCLUSIONS REFERENCES CHAPTER 10.A COMPRESSOR TRIP PREDICTION CHAPTER 11 THE FALCON PROJECT OVERVIEW CHAPTER HIGHLIGHTS 11.1 INTRODUCTION 11.2 THE DIAGNOSTIC PHILOSOPHY UNDERLYING THE FALCON SYSTEM 11.3 TARGET PROCESS SYSTEM 11.4 THE FIELDED FALCON SYSTEM 11.4.1 The Inference Engine 11.4.2 The Human/Machine Interface 11.4.3 The Dynamic Simulation Model 11.4.4 The Diagnostic Knowledge Base 11.5 THE DERIVATION OF THE FALCON DIAGNOSTIC KNOWLEDGE BASE 11.5.1 First Rapid Prototype of the FALCON System KBS 11.5.2 The Fielded FALCON System Development 11.5.3 The Fielded FALCON System’s Performance Results 11.6 THE IDEAL FALCON SYSTEM 11.7 USE OF THE KNOWLEDGE-BASED SYSTEM PARADIGM IN PROBLEM SOLVING ACKNOWLEDGMENTS REFERENCES CHAPTER 12 FAULT DIAGNOSTIC APPLICATION IMPLEMENTATION AND SUSTAINABILITY OVERVIEW CHAPTER HIGHLIGHTS NOMENCLATURE 12.1 KEY PRINCIPLES OF SUCCESSFULLY IMPLEMENTING NEW TECHNOLOGY 12.2 EXPECTATION OF ADVANCED TECHNOLOGY 12.2.1 What Are the Expected Actions? 12.2.2 Who Is the Audience? 12.2.3 What Are the Failure Modes? 12.2.4 When Is an Alert Expected and Valid? 12.3 DEFINING SUCCESS 12.4 LEARNING FROM HISTORY 12.5 EXAMPLE: REGULATORY CONTROL LOOP MONITORING 12.5.1 Regulatory Control Failure Modes 12.5.2 Expectations of Loop Monitoring 12.6 WHAT SUCCESS LOOKS LIKE 12.7 EXAMPLE: SYSTEMATIC STEWARDSHIP 12.8 CONCLUSIONS 12.8.1 Motivational Requirement 12.8.2 Setup Requirements 12.8.3 Usage Requirements 12.8.4 Sustainment and Continuous Improvement REFERENCES CHAPTER 13 PROCESS OPERATORS, ADVANCED PROCESS CONTROL, AND ARTIFICIAL INTELLIGENCE-BASED APPLICATIONS IN THE CONTROL ROOM CHAPTER HIGHLIGHTS OVERVIEW 13.1 INTRODUCTION 13.2 HISTORY OF SUSTAINABLE APC 13.3 OPERATORS AS ULTIMATE APC APPLICATION END USERS 13.4 APC APPLICATION DESIGN CONSIDERATIONS 13.5 APC DEVELOPMENT – INTERNAL VERSUS EXTERNAL EXPERTS 13.6 APC TECHNOLOGY 13.7 APC SUPPORT 13.8 CONCLUSIONS REFERENCES INDEX EULA