دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Debmalya Barh (editor)
سری:
ISBN (شابک) : 0128171332, 9780128171332
ناشر: Academic Pr
سال نشر: 2020
تعداد صفحات: 530
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence in Precision Health: From Concept to Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی در سلامت دقیق: از مفهوم تا کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی در سلامت دقیق: از مفهوم تا کاربردها منبعی در دسترس برای درک هوش مصنوعی و کاربردهای بلادرنگ آن در پزشکی دقیق در عمل فراهم میکند. نوشته شده توسط کارشناسان از کشورهای مختلف و با پیشینه های متنوع، این محتوا شامل دانش قابل دسترسی است که برای افراد غیر متخصص در علوم کامپیوتر به راحتی قابل درک است. این کتاب موضوعاتی مانند محاسبات شناختی و هوش هیجانی، تجزیه و تحلیل داده های بزرگ، سیستم های پشتیبانی تصمیم بالینی، یادگیری عمیق، امیدهای شخصی، سلامت دیجیتال، مدل های پیش بینی، پیش بینی بیماری های همه گیر، کشف دارو، تغذیه دقیق و تناسب اندام را مورد بحث قرار می دهد. علاوه بر این، بخشی اختصاص داده شده به بحث و تجزیه و تحلیل محصولات هوش مصنوعی مرتبط با مراقبت های بهداشتی دقیق از قبل در دسترس است.
این کتاب منبع ارزشمندی برای پزشکان، کارکنان مراقبت های بهداشتی، و محققان از حوزه های مختلف بیوپزشکی است که ممکن است یا ممکن است پیشینه محاسباتی نداشته باشد و بخواهد در مورد زمینه نوآورانه هوش مصنوعی برای سلامت دقیق اطلاعات بیشتری کسب کند.
Artificial Intelligence in Precision Health: From Concept to Applications provides a readily available resource to understand artificial intelligence and its real time applications in precision medicine in practice. Written by experts from different countries and with diverse background, the content encompasses accessible knowledge easily understandable for non-specialists in computer sciences. The book discusses topics such as cognitive computing and emotional intelligence, big data analysis, clinical decision support systems, deep learning, personal omics, digital health, predictive models, prediction of epidemics, drug discovery, precision nutrition and fitness. Additionally, there is a section dedicated to discuss and analyze AI products related to precision healthcare already available.
This book is a valuable source for clinicians, healthcare workers, and researchers from diverse areas of biomedical field who may or may not have computational background and want to learn more about the innovative field of artificial intelligence for precision health.
Front matter Copyright Dedication Contributors Editor\'s biography Preface Interpretable artificial intelligence: Closing the adoption gap in healthcare Artificial intelligence in healthcare Why do we need interpretable intelligent systems in healthcare? Right to explanation and the regulatory landscape Medicine as a quest for ``why´´ The need for a culture of AI-assisted healthcare Adoption in clinical decision-making Relevance in the marketplace What does interpretability mean? How to realize interpretability in intelligent systems? Achieving interpretability by design Case study: Predicting hemodynamic shock from thermal images using machine learning Achieving interpretability through inherently transparent models Linear and logistic regression models Decision tree models (Quinlan, 1986) Generalized additive models and partial dependence plots Achieving model interpretability through post hoc methods Feature importance Boruta Shapley values (SHAP) Surrogate trees Locally interpretable model-agnostic explanations (LIME) Achieving interpretability through graphical models Achieving interpretability in deep neural networks Taxonomy of interpretable deep learning methods Backpropagation-based methods Deconvolution Saliency maps Guided backpropagation Integrated gradients SmoothGrad Layer-wise relevance potential (LRP) DeepLIFT Perturbation-based techniques Lime Occlusion sensitivity Activation maximization Class model visualization (CMV) Grad-CAM and Grad-CAM++ Summary and road map for the future Acknowledgments References Artificial intelligence methods in computer-aided diagnostic tools and decision support analytics for clinical ... Introduction Artificial intelligence methods and applications Genetic algorithm Applications of genetic algorithms Support vector machines Applications of support vector machines Artificial neural networks and deep learning Application of artificial neural networks and deep learning Decision trees Case study: Predicting heart diseases k-Nearest neighbors Case study: Finding similar patients k-Means Case study: Clustering heart disease data Case study: Correlating gene expression to colorectal cancer outcomes Natural language processing Applications of natural language processing From concepts to applications Application: HINGE-A radiation oncology analytics portal Conclusion References Deep learning in precision medicine Introduction to deep learning Hardware and software requirements for deep learning Hardware-GPU cards Software-Deep learning package ANN, CNN, and deep learning concepts Concepts How deep learning transforms the study of human disease? Deep learning and clinical decision-making Deep learning and patient categorization and precision/predictive medicine Deep learning to study the fundamental biological processes underlying human disease The impact of deep learning in treating disease and developing new and personalized treatments An example of deep learning implementation in medicine Binary class definition Multiclass definition Encoder-decoder architecture End to end example Exploring the dataset and data preparation Data preprocessing Model implementation Setting up the environments and dependencies Building the blocks of the network Building the model Training the model Model predictions Conclusion and future directions Acknowledgments References Machine learning systems and precision medicine: A conceptual and experimental approach to single individual s ... Introduction: Personalized medicine and precision medicine First case study: Self-organizing maps (SOMs) and the case of quality-of-life scales The SOM algorithm Clinical application Second case study: Pick-and-squash tracking (PST) algorithm to cluster patients with and without Barrett disease The PST algorithm Clinical application Third case study: Clustering of patients with and without myocardial infarction by means of auto-contractive map (auto-CM) Auto-CM neural algorithm Clinical application Fourth case study: Use of several different machine learning systems to classify the single individual allowing degree of c ... General philosophy of the approach Is there any solution to this problem? Clinical application Discussion Conclusions and future direction References Further reading Machine learning in digital health, recent trends, and ongoing challenges Introduction Training and testing: The machine learning pipeline Machine learning algorithms Generative models Discriminative models Toolkits Machine learning in action: Exemplary tasks and case studies Snore sound detection Abnormal heart sound classification Challenges and future work directions Increased explainability Deployment of AI in mobile and embedded technologies Data sparsity Conclusion Acknowledgments References Data mining to transform clinical and translational research findings into precision health Introduction Data mining strategies and techniques in clinical and translational research Data mining applications in health care Data mining in clinical and translational research Data mining strategies and techniques Machine learning applications Data mining research and infrastructure Translating data mining to advance genomics in disease risk Healthy people Polygenic risk scores Translation initiatives to advance genomics in precision health Role of clinical research data warehousing in ``big data´´ science Data format Data sources Data model to knowledge model Integration of multiple data sources to advance precision health Environmental Behavioral Imaging Conclusion Future direction References Further reading Predictive models in precision medicine Introduction Predictive analysis Predictive modeling Predictive models Precision medicine How predictive modeling works in precision medicine Generalized linear models Decision trees Artificial neural networks Support vector machines Expert systems Naïve Bayes K-nearest neighbor Random forest Logistic regression Time series analysis Fuzzy logic Other methods and medical areas of use Real-time applications Conclusions and future directions References Further reading Deep neural networks for phenotype prediction in rare diseases: Inclusion body myositis: A case study Introduction Case study-inclusion body myositis Efficacy of the method Conclusion Acknowledgments References Artificial intelligence for management of patients with intracranial neoplasms Introduction Diagnosis ML for medical imaging ML for image segmentation Virtual biopsy with ML AI and histopathology AI for treatment AI and decision-making AI in neurosurgery AI for surgery simulation AI for intraoperative assistance AI in postoperative care AI for radiation therapy AI for prognosis Future challenges and directions Conclusions References Artificial intelligence to aid the detection of mood disorders Introduction The case for AI-based objective diagnostic markers Machine learning: A brief introduction Data relating to mood disorders Physiological data Digital-trace information Audio-visual information Software platforms and smartphone applications AI in action: Depression and bipolar disorder detection Depression detection Bipolar disorder detection Challenges and future work directions Conclusion Acknowledgment References Use of artificial intelligence in Alzheimers disease detection Introduction Artificial intelligence techniques in Alzheimers disease detection Artificial neural networks K-nearest neighbor (k-NN) Support vector machines (SVM) Random forest Ensemble classifiers Deep neural networks Convolutional neural networks Why artificial intelligence is important for AD Conclusions and future directions References Artificial intelligence to predict atheroma plaque vulnerability Introduction Atheroma plaque vulnerability: Case of study Modeling of the atherosclerotic coronary artery Idealized geometry Parameters studied Mesh Material properties Boundary conditions and loads Results Statistical analysis Vulnerability study Machine learning techniques (MLT) as a helpful tool toward determination of plaque vulnerability Data acquisition and preprocessing Mathematical methods for regression Artificial neural network (ANN) Support vector machine (SVM) Classical linear regression Performance and accuracy of the regressor How does the decision support system work? Results of the vulnerability prediction Discussion Conclusions and future directions Acknowledgments References Artificial intelligence in cardiovascular medicine: Applications in the diagnosis of infarction and prognosis ... Introduction Summary of the main artificial intelligence algorithms Artificial neural networks and deep learning Decision trees Support vector machines Application of artificial intelligence to the diagnosis of acute coronary syndromes and acute myocardial infarction Historical aspects Context of application Artificial intelligence applied to the prognosis of heart failure Works based on clinical and laboratory data Works that included biomarkers Works based on echocardiography or effort tests Telemonitoring-based works Conclusions and future directions References Artificial intelligence-based decision support systems for diabetes Introduction Diabetes management T1D treatment Blood glucose prediction Prediction of glycemic episodes Insulin bolus calculators and advisory systems Risk and patient stratification Commercial systems Conclusions Future directions Acknowledgments References Clinical decision support systems to improve the diagnosis and management of respiratory diseases Introduction A brief review of the machine learning methods used in respiratory care Logistic regression K-nearest neighbor (KNN) Decision tree (DTREE) Artificial neural networks (ANNs) Support vector machines Random forest (RF) AdaBoost Performance evaluation and hypothesis test Brief introduction to the methods of pulmonary function analysis Spirometry Forced oscillation technique Artificial intelligence/machine learning methods to improve the pulmonary function analysis Spirometry The first studies in the 1980s Studies performed in the 2000s Studies performed in the 2010s Forced oscillation technique (FOT) Miscellaneous pulmonary function methods Telemedicine Examples of commercial systems Possible future directions Big data analytics Interactive machine learning Deep learning Conclusions and future directions References Artificial intelligence in neuro, head, and neck surgery Introduction Artificial intelligence in head and neck surgery State-of-art Precision systems used in otorhinolaryngology Recent studies Otology Rhinology and infections Oral and laryngology Reconstructive surgeries of head and neck Oncology Education Artificial intelligence in neurosurgery Recent studies Robotic surgery Neurovascular surgery Neurooncology Trauma Spinal surgery Neuroimaging Precision systems used in routine practice Conclusions and future directions References Further reading Use of artificial intelligence in emergency medicine Medical informatics on emergency medicine Artificial intelligence Artificial intelligence and emergency medicine Artificial intelligence studies in emergency medicine Triage Cardiac arrest Cardiovascular events diagnosis Stroke Sepsis Prediction of admission and visits Commercial precision systems used in emergency care Conclusion and future aspects References Further reading Use of artificial intelligence in infectious diseases Preamble on infectious diseases Artificial intelligence in health care The utilization of AI in infectious diseases Improved diagnosis and blocking transmission Diagnosis Epidemiology and transmission Treatments and antimicrobial drug resistance Improving the process On the technical aspects The potential of extreme value theory Basics on the concept of extreme values On the design of data collection On the integration of AI in health-care institutions Conclusions and future perspectives Acknowledgments References Artificial intelligence techniques applied to patient care and monitoring Introduction Patient care scenarios Artificial intelligence approaches for health care Data gathering and feature extraction Data analysis Feedback generation Patient safety through smart notifications Inferring context using artificial intelligence Challenges and future directions References Use of artificial intelligence in precision nutrition and fitness Introduction The importance of nutrition and fitness for health and well-being What is precision medicine: Concepts and historical aspects What is artificial intelligence: Concepts and historical aspects related to its use in nutrition and fitness Fuzzy logic Artificial neural networks Evolutionary computing What is precision nutrition and precision fitness: Clarifying the concepts How AI could help with precision nutrition Decision-making algorithm for nutritional meal planning/dietary menu planning Artificial intelligence-based diet and supplements AI used in genetic tests for precision nutrition and fitness Artificial intelligence approach to nutritional meal planning for cancer Artificial intelligence approach to nutritional meal planning for cardiovascular diseases Artificial intelligence approach to nutritional meal planning for obesity (weight management/loss) Artificial intelligence approach to nutritional meal planning for T2D patients Artificial intelligence-based nutrition and fitness support systems and apps (free and commercial) How AI could help with precision fitness Challenges and future perspectives References Artificial intelligence in precision health: Systems in practice Introduction Concept of precision health in the era of artificial intelligence History and approaches of artificial intelligence in precision health Applications of machine-learning approaches in precision health Case-based reasoning: k-nearest neighbor Case-based reasoning (CBR): Other techniques K-means clustering Logistic regression, linear discriminant analysis, principal components analysis Support vector machines Decision trees Random forests Bayesian networks and Naïve Bayesian Classifiers (NBC) Artificial neural networks (ANN) Deep learning Genetic algorithms Artificial immune systems Ensembles Repositories Systems in place: AI-based commercial decision support systems in precision health practice IBM Watson (www.ibm.com/watson) Isabel Healthcare (www.isabelhealthcare.com) Symptomate (www.symptomate.com) GeNIe and SMILE (www.bayesfusion.com/genie/) Other differential diagnosis generators Crowdsourcing Other intelligent tools of interest Sophia genetics (www.sophiagenetics.com) Genetic therapies-Deep genomics (www.deepgenomics.com) Genomic and artificial intelligence solutions-BioRealm (www.biorealm.ai) DeepVariant and DeepMind by Google (www.ai.google/healthcare; www.deepmind.com; www.cloud.google.com; www.github.com/google ... Emedgene platform-Emedgene (www.emedgene.com) Personalized medical decision-making: Flow Health (www.flowhealth.com) Panorama (NIPT)-Natera (www.natera.com) Nebula Genomics (www.nebula.org) Tempus (www.tempus.com) Cognitive mobile health care: Pathway Genomics and Apple Health Kit (www.pathway.com) Helix (www.helix.com) Conclusions and future directions References Index