دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: Aboul Ella Hassanien, Roheet Bhatnagar, Ashraf Darwish سری: Studies in Computational Intelligence, 912 ISBN (شابک) : 3030519198, 9783030519193 ناشر: Springer سال نشر: 2020 تعداد صفحات: 310 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای توسعه پایدار: نظریه ، عمل و برنامه های آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین پیشرفتها در زمینه هوش مصنوعی و فناوریهای مرتبط را با تمرکز ویژه بر توسعه پایدار و کاربردهای هوش مصنوعی سازگار با محیطزیست نشان میدهد. با بحث در مورد نظریه، کاربردها و تحقیقات، تمام جنبه های هوش مصنوعی را در زمینه توسعه پایدار پوشش می دهد.
This book highlights the latest advances in the field of artificial intelligence and related technologies, with a special focus on sustainable development and environmentally friendly artificial intelligence applications. Discussing theory, applications and research, it covers all aspects of artificial intelligence in the context of sustainable development.
Preface Contents Artificial Intelligence in Sustainability Agricultures Optimization of Drip Irrigation Systems Using Artificial Intelligence Methods for Sustainable Agriculture and Environment 1 Introduction 2 Mathematical Model 3 Algorithm 4 Simulation 5 Conclusion References Artificial Intelligent System for Grape Leaf Diseases Classification 1 Introduction 2 Materials and Methods 2.1 K-Means Algorithm for Fragmentation 2.2 Multiclass Support Vector Machine Classifier 3 The Proposed Artificial Intelligent Based Grape Leaf Diseases 3.1 Dataset Characteristic 3.2 Image Processing Phase 3.3 Image Segmentation Phase 3.4 Feature Extraction Phase 3.5 Classification Phase 4 Results and Discussion 5 Conclusions References Robust Deep Transfer Models for Fruit and Vegetable Classification: A Step Towards a Sustainable Dietary 1 Introduction 2 Related Works 3 Dataset Characteristics 4 Proposed Methodology 4.1 Data Augmentation Techniques 5 Experimental Results 6 Conclusion and Future Works References The Role of Artificial Neuron Networks in Intelligent Agriculture (Case Study: Greenhouse) 1 Introduction 2 Overview of AI 3 Agriculture and Greenhouse 4 Intelligent Control Systems (SISO and MIMO) 4.1 Particular Aspects of Information Technology on Greenhouse Cultivation 4.2 Greenhouse Climate Control Techniques 5 Modern Optimization Techniques 5.1 Genetic Algorithms 5.2 Main Attractions of GAs 5.3 Strong and Weak Points of FL and Neural Networks 6 Fuzzy Identification 7 Conclusion References Artificial Intelligence in Smart Health Care Artificial Intelligence Based Multinational Corporate Model for EHR Interoperability on an E-Health Platform 1 Introduction 2 The Common Goal to Reduce Margin of Error in the HC Sector 3 Defining EPRs, EHRs and Clinical Systems 4 Some Hurdles in an EHR System 5 Overcoming Interoperability Issues 6 Barriers in EHR Interoperability 7 Characteristics and Improvements of the UK-NHS Model 8 Summary of MNC/MNE Characteristics 9 Proposed Solutions—the UK-NHS Model or the MNC Organizational Model 10 E-Health and AI 11 Conclusions References Predicting COVID19 Spread in Saudi Arabia Using Artificial Intelligence Techniques—Proposing a Shift Towards a Sustainable Healthcare Approach 1 Introduction 2 Literature Review 3 Experimental Methodology 3.1 Dataset Description and Pre-processing 3.2 Building Models 4 Model Evaluation Results and Analysis 5 Sustainable Healthcare Post COVID 19 for SA 5.1 Sustainable Healthcare 5.2 Staff and Clinical Practice Sustainability During the Pandemic 5.3 Expand Hospital-at-Home During the COVID-19 Pandemic 5.4 COVID-19 Pandemic and Sustainable Development Groups 5.5 Research Directions 6 Conclusion References Machine Learning and Deep Learning Applications A Comprehensive Study of Deep Neural Networks for Unsupervised Deep Learning 1 Introduction 2 Feedforward Neural Network 2.1 Single Layer Perceptron 2.2 Multi-Layer Perceptron 3 Deep Learning 3.1 Restricted Boltzmann Machines (RBMs) 3.2 Variants of Restricted Boltzmann Machine 3.3 Deep Belief Network (DBN) 3.4 Autoencoders (AEs) 4 Applications and Implications of Deep Learning 4.1 Sustainable Applications of Deep Learning 5 Challenges and Future Scope References An Overview of Deep Learning Techniques for Biometric Systems 1 Introduction 1.1 Deep Learning 1.2 Deep Learning for Biometric 2 Deep Learning in Neural Networks 2.1 Autoencoders AEs 2.2 Deep Belief Networks DBN 2.3 Recurrent Neural Networks RNN 2.4 Convolutional Neural Networks CNNs 3 Deep Learning Frameworks 4 Biometrics Systems 4.1 Deep Learning for Unimodal Biometrics 4.2 Deep Learning for Multimodal Biometrics 5 Challenges 6 Conclusion and Discussion References Convolution of Images Using Deep Neural Networks in the Recognition of Footage Objects 1 Introduction 2 Statement of the Problem 3 Image Processing by Non-Parametric Methods 4 Using a Convolutional Neural Network in a Minimum Sampling Image Recognition Task 5 Deep Learning 6 Presence of Small Observations Samples 7 Example of Application of a Convolutional Neural Network 8 Conclusion References A Machine Learning-Based Framework for Efficient LTE Downlink Throughput 1 Introduction 2 4G/LTE Network KPIs 3 ML Algorithms Used in the Framework 3.1 Dimension Reduction Algorithm 3.2 K-Means Clustering Algorithm 3.3 Linear Regression Algorithm with Polynomial Features 4 A ML-Based Framework for Efficient LTE Downlink Throughput 4.1 Phase 1: Preparing Data for ML 4.2 Phase 2: Data Visualization and Evaluation 4.3 Phase 3: Analyzing Quality Metric 5 Experimental Results and Discussion 6 Conclusion References Artificial Intelligence and Blockchain for Transparency in Governance 1 Introduction 2 Literature Review of Research Paper 2.1 Conceptual Framework 2.2 Review Based Work 2.3 Implementation Based Work 2.4 Comparative Analysis 3 Selection and Justification of the Preferred Method 4 Preferred Method Detailed Comparison 5 Conclusions References Artificial Intelligence Models in Power System Analysis 1 Introduction 2 AI Techniques: Basic Review 2.1 Expert Systems (ES) 2.2 Genetic Algorithms (GA) 2.3 Artificial Neural Networks (ANNs to NNWs) 2.4 Fuzzy Logic 3 AI Applications in Power System 3.1 AI in Transmission Line 3.2 Smart Grid and Renewable Energy Systems—Power System Stability 3.3 Expert System Based Automated Design, Simulation and Controller Tuning of Wind Generation System 3.4 Real-Time Smart Grid Simulator-Based Controller 3.5 Health Monitoring of the Wind Generation System Using Adaptive Neuro-Fuzzy Interference System (ANFIS) 3.6 ANN Models—Solar Energy and Photovoltaic Applications 3.7 Fuzzy Interference System for PVPS (Photovoltaic Power Supply) System 4 Sustainability in Power System Under AI Technology 5 Conclusion and Future Work References Internet of Things for Water Quality Monitoring and Assessment: A Comprehensive Review 1 Introduction 2 Water Quality Assessment in Environmental Technology 3 Internet of Things in Water Quality Assessment 4 Water Quality Monitoring Systems 4.1 Hardware and Software Design 4.2 Smart Water Quality Monitoring Solutions 5 An Empirical Evaluation of IoT Applications in Water Quality Assessment 6 Conclusions References Contribution to the Realization of a Smart and Sustainable Home 1 Introduction 2 AI 2.1 Some Applications of AI 2.2 AI Methodological Approaches 3 IoT 3.1 The IoT History 3.2 Operation 3.3 Areas of Application 3.4 Relationship Between IoT and IA 4 Smart Home 4.1 Home Automation Principles 4.2 Definition of the Smart Home 4.3 Ambient Intelligence 4.4 Communicating Objects 5 Home Automation Technologies 5.1 Wireless Protocols 5.2 802.15.4 5.3 Carrier Currents 5.4 Wired Protocols 5.5 1-Wire 6 Home Automation Software 6.1 OpenHAB 6.2 FHEM 6.3 HEYU 6.4 Domogik 6.5 Calaos 6.6 OpenRemote 6.7 LinuxMCE 7 Home Automation and Photovoltaic Energy 8 Implementation 8.1 Cost of Home Automation 8.2 Hardware and Software Used 9 Conclusion References Appliance Scheduling Towards Energy Management in IoT Networks Using Bacteria Foraging Optimization (BFO) Algorithm 1 Introduction 2 Review of Related Literature 3 System Model 3.1 Category of Loads 3.2 Specific Objectives of This Work 3.3 Description of Major Home Appliances Considered 3.4 Length of Operation Time 3.5 Appliances Scheduling Optimization Problem Formulation 4 BFA Meta-Heuristic Optimization Technique 4.1 Chemotaxis 4.2 Reproduction 4.3 Elimination and Dispersal 5 Experiment Results and Discussion 5.1 User Comfort 5.2 Electricity Cost 5.3 Load or Electricity Consumption 5.4 Peak Average Ratio (PAR) 5.5 Load Balancing 6 Conclusion References