دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Rajesh Jha. Bimal Kumar Jha
سری:
ISBN (شابک) : 0367765276, 9780367765279
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 280
[363]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence-Aided Materials Design: AI-Algorithms and Case Studies on Alloys and Metallurgical Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی مواد به کمک هوش مصنوعی: الگوریتمهای هوش مصنوعی و مطالعات موردی روی آلیاژها و فرآیندهای متالورژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی مواد به کمک هوش مصنوعی: الگوریتمهای هوش مصنوعی و مطالعات موردی روی آلیاژها و فرآیندهای متالورژیکی کاربرد مفاهیم هوش مصنوعی (AI)/یادگیری ماشین (ML) را برای توسعه مدلهای پیشبینیکننده که میتوانند برای طراحی استفاده شوند، توصیف میکند. مواد آلیاژی، از جمله آلیاژهای مغناطیسی، سوپرآلیاژهای پایه نیکل، آلیاژهای پایه تیتانیوم و آلیاژهای پایه آلومینیوم. خوانندگانی که با الگوریتمهای AI/ML جدید هستند، میتوانند از این کتاب به عنوان نقطه شروع استفاده کنند و از طریق مطالعات موردی گنجانده شده از پیادهسازی MATLAB و Python الگوریتمهای AI/ML استفاده کنند. محققان باتجربه AI/ML که می خواهند الگوریتم های جدیدی را امتحان کنند می توانند از این کتاب استفاده کنند و مطالعات موردی را برای مرجع مطالعه کنند.
این کتاب برای دانشمندان مواد و متالورژیستهایی نوشته شده است که علاقهمند به کاربرد هوش مصنوعی، ML و علم داده در توسعه مواد جدید هستند.
Artificial Intelligence-Aided Materials Design: AI-Algorithms and Case Studies on Alloys and Metallurgical Processes describes the application of artificial intelligence (AI)/machine learning (ML) concepts to develop predictive models that can be used to design alloy materials, including magnetic alloys, nickel-base superalloys, titanium-base alloys, and aluminum-base alloys. Readers new to AI/ML algorithms can use this book as a starting point and use the included MATLAB and Python implementation of AI/ML algorithms through included case studies. Experienced AI/ML researchers who want to try new algorithms can use this book and study the case studies for reference.
This book is written for materials scientists and metallurgists interested in the application of AI, ML, and data science in the development of new materials.
Cover Half Title Title Page Copyright Page Dedication Contents Foreword Preface Acknowledgments Authors Biographies 1. Introduction: Artificial Intelligence and Materials Design 1.1 Data-Driven Materials Science: Initiatives, Goals, and Progress 1.2 Multiscale-Materials Modeling 1.2.1 Initiatives in the United States 1.2.2 The Integrated Computational Materials Engineering Expert Group (ICMEg) 1.3 Virtual Materials Design (VMD) 1.4 Challenges (MGI/ICME/VMD) 1.4.1 Potential Solution Through Data Science/Artificial Intelligence 1.5 This Book and Its contribution Towards MGI/ICME and Virtual Materials Design (VMD) 1.6 Aim and Scope of Current Book 1.6.1 Discovering and Optimizing Chemistry/Processing-Structure-Property (C/PSP) Linkages 1.6.1.1 State of the Art 1.6.1.2 Challenge 1.6.1.3 Research Plan 1.6.2 Data Science/Artificial Intelligence Techniques for Accelerating the Discovery and Deployment of New Materials 1.6.2.1 State of the Art 1.6.2.2 Challenge 1.6.2.3 Research Plan 1.6.3 Data from Production: Industrial Furnaces and Rolling Mill 1.6.3.1 Iron-Making Blast Furnace 1.6.3.2 Basic Oxygen Furnace (BOF) or LD (Linz Donawitz) Steelmaking Furnace 1.6.3.3 Rolling Mill 1.6.4 Nano Mechanics and Atomic Force Microscope (AFM) Imaging 1.6.5 Thermo-Mechanical Treatment 1.6.6 Phase Field 1.6.7 Atomistic Simulations 1.6.7.1 Vienna Atomistic Simulation Package (VASP) 1.6.7.2 Schrodinger Materials Design Suite 1.6.8 Efficient Way of Choosing a Supervised Machine Learning Algorithm 1.6.8.1 State of the Art 1.6.8.2 Challenges 1.6.8.3 Research Plan 1.6.9 CALPHAD Approach 1.7 CASE STUDY #1: Uncertainty Quantification and Propagation Studied Under the Framework of CALPHAD Approach Using PyCalphad and ESPEI Software 1.7.1 Uncertainty Quantification 1.7.2 Uncertainty Propagation 1.7.3 Conclusion: Uncertainty Quantification and Propagation 2. Metallurgical/Materials Concepts 2.1 Materials/Alloy Design 2.1.1 Effect of Chemical Composition 2.1.2 Effect of Processing 2.1.3 Effect of Structure 2.1.4 Effect of Composition, Processing, and Structure on Properties (C/P-S-P) 2.2 CALPHAD Approach 2.2.1 Precipitation Kinetics: Nucleation and Growth of Grains/Crystals of Desired Phase 2.2.2 CALPHAD-Based Software and Database: Application and Limitations 2.2.2.1 THERMOCALC (Andersson et al. 2002) 2.2.2.2 FACTSAGE (Bale et al. 2002) 2.2.2.2.1 Pareto-Optimal Set in CALPHAD-Based Software FACTSAGE 2.2.2.3 JMatPro®: (JMatPro 2021) 2.2.2.4 PyCalphad/ESPEI (Otis and Liu 2017, Otis et al. 2021) 2.2.2.4.1 Phase Diagram in PyCalphad 2.3 Nanomechanics and Nanotribology 2.3.1 Nanoindentation 2.3.2 Atomic Force Microscopy (AFM) imaging 2.3.3 Modeling and Simulation: Case Study in This Book 2.4 Magnetism and Magnetic Terminologies 2.4.1 Magnetization (M) (Buschow and de Boer 2003) 2.4.2 Magnetic Field (H) (Buschow and de Boer 2003) 2.4.3 Magnetic Flux Density (Dilon 2014) 2.4.4 Core Loss (Pcv) (Herzer 1993) 2.4.5 Coercivity (Hc) (Cullity and Graham 2009, Buschow and de Boer 2003) 2.4.6 Magnetic Anisotropy (Herzer 1993) 2.4.7 Magnetostriction (Λs) (Buschow and de Boer 2003) 2.4.8 Permeability (Μ) (Cullity and Graham 2009, Buschow and de Boer 2003) 2.4.9 Curie Temperature (Cullity and Graham 2009) 2.4.10 Hard Magnets (Jha et al. 2017, Mcguiness et al. 2015) 2.4.11 Soft Magnets (Buschow and de Boer 2003, Herzer 1993) 2.5 Extractive/Process Metallurgy 2.5.1 Blast Furnace Iron Making 2.5.1.1 Hot Metal Production 2.5.1.2 Furnace Variables 2.5.1.2.1 Iron Ore 2.5.1.2.2 Coke (Biswas 1981, Smith 2017) 2.5.1.2.3 Flux (Ghosh and Chatterjee 2015) 2.5.1.3 Blast Furnace Process Description (Ghosh and Chatterjee 2015, Zhou et al. 2016) 2.5.1.3.1 Indirect Reduction Zone 2.5.1.3.2 Direct Reduction and Melting Zone 2.5.1.4 Productivity 2.5.2 Steelmaking 2.5.2.1 Basic Oxygen Furnace (BOF): LD (Linz Donawitz) Furnace (Turkdogan 1996) 2.5.2.1.1 Input: Raw Materials Charged into the Converter 2.5.2.1.2 Output: Materials Produced After Blowing Operation Is Complete 2.5.2.1.3 Reactions in BOF (Ghosh and Chatterjee 2015) 2.5.2.1.3.1 Reactions at Oxygen Jet Impact for Top-Blown Converters 2.5.2.1.3.2 Removal of Impurity During Blowing Operation 2.5.2.1.4 Slag 2.6 Nickel-Base Superalloys 2.6.1 Critical Phases 2.6.2 Effect of Alloying Elements 2.7 Aluminum Alloys 2.8 Titanium Alloys 2.8.1 High-Temperature Applications 2.8.1.1 Phases 2.8.1.2 Titanium Aluminides (Gupta and Pant 2018, Wu 2006) 2.8.2 Biomaterials 2.9 Utilizing Data from Other Approaches 2.9.1 Density Functional Theory/Ab-initio Method 2.9.1.1 VASP 2.9.1.2 Schrodinger Materials Design Suite 2.10 CASE STUDY # 2: Inverse Determination of Phase-Field Model Parameters for a Targeted Grain Size Through AI Algorithms 2.10.1 Phase-Field Approach (Moelans et al. 2015, Chang and Moelans 2015) 2.10.1.1 Background 2.10.1.2 Phase-Field Variables Identification for This Study 2.10.1.3 Application of AI Algorithms 2.10.1.4 Application of AI-Based Algorithm on Phase-Field Data 2.10.1.4.1 Generation of New Input Parameters 2.10.1.5 Parallel Coordinate Chart (PCC) 2.11 Conclusions 3. Artificial Intelligence Algorithms 3.1 Introduction 3.2 Data Mining 3.2.1 Uncertainties 3.2.1.1 Uncertainty Propagation 3.2.1.2 Uncertainty Mitigation 3.2.1.3 Uncertainty Management 3.2.1.4 Case Studies on Uncertainties 3.2.2 Collecting Data from Various Sources 3.2.3 Pre-Processing/Cleaning Data from Various Sources 3.2.4 Scaling Data 3.2.5 Statistics and Visualization 3.2.6 Preparation/Selection of Data for Development of Surrogate Models Through Machine Learning:= (Box and Draper 1987) 3.3 Designing Experiments or Predicting Experimental Parameters Through Data Mining 3.3.1 Random Sequence Generators: (mode FRONTIER) 3.3.2 Sobol's Algorithm (Sobol 1967) 3.3.3 Adaptive Space Filler (mode FRONTIER) 3.3.4 Importance of Support Points in Developing Accurate Predictive Models (Box and Draper 1987) 3.4 Surrogate Models/Meta-Models 3.4.1 Selection of Machine Learning Algorithms Based on Nature of Data 3.4.2 Performance Measurements of a Metamodel 3.4.2.1 R Square (R2) 3.4.2.2 Relative Average Absolute Error (RAAE) 3.4.2.3 Relative Maximum Absolute Error (RMAE) 3.4.2.4 AIC (Akaike Information Criterion): (mode FRONTIER) 3.4.3 Statistical Approaches: (mode FRONTIER) 3.5 Machine Learning: Supervised (Box and Draper 1987, Mueller et al. 2016) 3.5.1 Artificial Neural Networks (ANNs) (Basheer and Hajmeer 2000) 3.5.2 Deep Learning (Lecun et al. 2015) 3.5.2.1 Tensorflow and Keras 3.5.3 Genetic Programming 3.5.4 K-Nearest Neighbor 3.5.5 Kriging Model (modeFRONTIER 2021) 3.5.6 Gaussian Processes (modeFRONTIER 2021, Schulz et al. 2018, Tancret 2012) 3.5.7 Hybrid Meta-models (modeFRONTIER 2021) 3.5.8 Radial Basis Functions (RBF) (modeFRONTIER 2021) 3.5.9 Polynomial Regression Model (PR) (modeFRONTIER 2021) 3.6 Machine Learning: Unsupervised (modeFRONTIER 2021) 3.6.1 Principal Component Analysis (PCA) (modeFRONTIER 2021) 3.6.2 Hierarchical Clustering Analysis (HCA) (modeFRONTIER 2021) 3.6.3 Self-Organizing Maps (SOM) (modeFRONTIER 2021, Jha et al. 2017) 3.7 Multi-Objective Optimization 3.7.1 Pareto-Optimality 3.7.1.1 Pareto-Optimal Set 3.7.1.2 Evolutionary Algorithms (EA) for Multi-Objective Optimization 3.8 Evolutionary Algorithms (EAs)/Genetic Algorithms (GAs) 3.8.1 Non-Dominated Sorting Genetic Algorithm (NSGA-II) 3.8.1.1 Elitist Preserving Strategy 3.8.1.2 Crowding Distance Selection 3.8.2 Predator-Prey Genetic Algorithm (PPGA) (Pettersson et al. 2007) 3.8.3 Multi-Objective Particle Swarm Optimization (MOPSO) 3.8.4 Simulated Annealing (SA) 3.8.4.1 Multi-Objective Simulated Annealing (MOSA) 3.8.4.2 Archived Multi-Objective Simulated Annealing (AMOSA) 3.8.5 Evolution Strategies (ESs) 3.8.5.1 Multi-Membered ES (MMES) 3.8.5.2 Recombinative ES 3.8.6 Differential Evolution (DE) 3.8.6.1 Initialization of Initial Population 3.8.6.2 Differential Mutation 3.8.6.3 Crossover 3.8.6.4 Selection 3.8.7 Strength Pareto Evolutionary Algorithm 2 (SPEA 2) 3.9 Inverse Design 3.10 Multi-Criterion Decision Making (MCDM) (Miettinen 1999) 3.11 CASE STUDY #3: Designing New Molecules/Refrigerants by Computational Chemistry and AI Approach Using Schrodinger Materials Science Suite Software 3.11.1 Background 3.11.2 Global Warming Potential and Infrared Absorption Spectra 3.11.3 Conclusions 4. Case Study #4: Computational Platform for Developing Predictive Models for Predicting Load-Displacement Curve and AFM Image: Combined Experimental-Machine Learning Approach 4.1 Introduction: Background 4.2 Case Studies 4.2.1 Cold Sprayed Aluminum Based Bulk Metallic Glass (AL-BMG) Coating (Pitchuka et al. 2014, 2016) 4.2.2 Al-5CNT Coating (Bakshi et al. 2010) 4.3 Results: Application of Machine Learning Algorithms 4.3.1 Case Study 4.2.1: Load-Displacement Curve Prediction for AL-BMG as Sprayed/Cast Coating 4.3.1.1 ANN Model Development in This Work 4.3.2 Case Study 4.2.1: AFM Image Prediction for AL-BMG as Sprayed/Cast Coating 4.3.3 Case Study 4.2.2: Load-Displacement Curve Prediction for Al-5CNT Coating 4.3.4 Case Study 4.2.2: AFM Image Prediction for Al-5CNT Coating 4.3.5 HA CNT 4.4 Conclusions 5. Case Study #5: Design of Hard Magnetic AlNiCo Alloys: Combined Machine Learning-Experimental Approach 5.1 Introduction: Description of Case Study and Goals 5.2 Design Variables (composition), Targeted Properties, Metamodeling, and Multi-Objective Optimization Problem Formulation 5.2.1 Data Acquisition 5.2.2 Targeted Properties and Multi-Objective Problem Formulation (Jha 2016) 5.2.3 Software Used in This Work 5.3 Application of Supervised Machine Learning Algorithms 5.4 Multi-Objective Optimization for Determining Novel Composition of New Magnets 5.5 Application of Unsupervised Machine Learning Algorithms 5.6 Comparison of Experimental and Predictions from AI-Based Approaches with Physical Models 5.6.1 Comparison with Commercial Alloys 5.6.2 Comparison: AI Predictions vs Experiments 5.7 Conclusions 6. Case Study #6: Design and Discovery of Soft Magnetic Alloys: Combined Experiment-Machine Learning-CALPHAD Approach 6.1 Introduction 6.2 Ab-Initio DFT: Estimation of Magnetic States for Various Phases 6.3 CALPHAD: Thermodynamics/Phase Transformation and Kinetics 6.3.1 Identification of Stable and Metastable Phases (Jha et al. 2017) 6.3.2 Precipitation Kinetics Simulation (Jha et al. 2017, 2018) 6.4 Application of Machine Learning Algorithms in Optimizing Precipitation Kinetics of Desired Fe3Si Phase (Α″ With D03 Structure) (Jha et al. 2018) 6.5 Experimental Validation 6.5.1 Isothermal Annealing at 540°C for 1 Hour (Jha et al. 2019) 6.5.1.1 CALPHAD Model Parametrization 6.5.2 Annealing Time of 0.1 Seconds (Diercks et al. 2020) 6.6 Discovery of New Soft Magnetic Alloys Through the AI Approach 6.6.1 Unsupervised Machine Learning 6.6.2 Supervised Machine Learning and Multi-Objective Optimization 6.7 Conclusions 7. Case Study #7: Nickel-Based Superalloys: Combined Machine Learning-CALPHAD Approach 7.1 Introduction 7.2 CALPHAD Approach: Thermodynamics/Phase Transformation 7.3 Application of Machine Learning Algorithms 7.3.1 Visualization and Correlation 7.3.2 Inverse Design of Chemistry/Composition for Given Stress and Time to Rupture 7.4 Inverse Determination of Chemistry of Alloy for a Given Value of Stress and Time to Rupture 7.5 Conclusion from Inverse Design 8. Case Study #8: Design of Aluminum Alloys: Combined Machine Learning-CALPHAD Approach 8.1 Introduction: Background 8.2 Materials and Methods: CALPHAD Approach: Thermodynamics/Phase Transformation and Precipitation Kinetics 8.2.1 CALPHAD: Identification of Stable and Metastable Phases 8.3 Results: Application of Machine Learning Algorithms 8.3.1 Deep Learning Artificial Neural Network (DL-ANN) Model 8.3.2 Self-Organizing Map (SOM) Analysis 8.3.3 6XXX Alloys 8.4 Conclusions 9. Case Study #9: Titanium Alloys for High-Temperature Applications: Combined Machine Learning-CALPHAD Approach 9.1 Problem Formulation 9.2 CALPHAD Approach: Thermodynamics/Phase Transformation 9.2.1 Final Data from CALPHAD That Will Be Used for SOM Analysis 9.3 Application of Machine Learning Algorithms 9.4 Titanium Aluminides 9.4.1 Conventional Experimental Design 9.4.1.1 Challenges 9.4.2 Proposed Method 9.5 Conclusions 10. Case Study #10: Design of β-Stabilized, ω-Free, Titanium-Based Biomaterials: Combined Machine Learning-CALPHAD Approach 10.1 CALPHAD Approach: Thermodynamics/Phase Transformation 10.2 Application of Machine Learning Algorithms for Predicting Novel Compositions/Temperature for Improving Phase Stability of Desired β-Phase While Avoiding Detrimental α- and ω-Phases 10.2.1 Problem Formulation 10.2.1.1 Ti-Ta-Nb-Sn-Mo-Zr-Fe-Cr-V System 10.2.1.2 Ti-Nb-Ta System 10.3 Supervised Machine Learning in RapidMiner 10.4 Unsupervised Machine Learning in modeFRONTIER: Self-Organizing Maps (SOMs) 10.5 Unsupervised Machine Learning in modeFRONTIER: Principal Component Analysis (PCA) 10.6 Multi-Objective Optimization in modeFRONTIER 10.6.1 Variable Screening 10.6.2 Development of Supervised Machine Learning Models 10.6.3 Multi-Objective Optimization 10.7 Conclusions 11. Case Study #11: Industrial Furnaces I: Application of Machine Learning on Industrial Iron-Making Blast Furnace Data 11.1 Blast Furnace Iron-Making 11.1.1 Blast Furnace Operation: Analytical Model and Data-Driven Model 11.1.2 CO2 Emissions from a Blast Furnace 11.1.3 Hot Metal Temperature and Silicon Content in Hot Metal 11.2 Dataset Used in This Chapter 11.3 Furnace 1: 2-Month Data Was Used 11.3.1 Supervised Machine Learning in RapidMiner 11.3.2 Unsupervised Machine Learning in modeFRONTIER 11.3.3 Multi-Objective Optimization in modeFRONTIER 11.3.3.1 Variable Screening Through ANOVA 11.3.3.2 Model Development by Supervised Machine Learning 11.3.3.3 Multi-Objective Optimization Through Genetic Algorithm 11.4 Furnace 2: 1-Month Data Was Used 11.4.1 Analysis of Data with Respect to Operating Parameters and Objectives 11.4.2 Unsupervised Machine Learning: Self-Organizing Maps 11.5 Furnace 3: 1-Year Data Was Used for This Analysis 11.5.1 Data Processing 11.5.1.1 Variable Screening 11.5.2 Unsupervised Machine Learning: Self-Organizing Maps 11.5.3 Multi-Objective Problem Formulation 11.5.3.1 Case 1: Two Objectives and One Constraint 11.5.3.2 Case 2: Two Objectives and Two Constraints 12. Case Study #12: Industrial Furnaces II: Development of GUI/APP to Determine Additions in LD Steelmaking Furnace 12.1 Introduction: LD Steelmaking 12.2 Development of GUI: Formulation of Analytical Model 12.2.1 Calculations: Assumptions 12.2.2 Material Balance 12.3 GUI/APP in MATLAB 12.4 Simulation of LD steelmaking process in Thermo-Calc 12.5 CALPHAD approach: Determining effect of various microalloying elements on crack succeptiblity coefficient of Al-Si killed microalloyed steel 12.6 Conclusion 13. Case Study #13: Selection of a Supervised Machine Learning (Response Surface) Algorithm for a Given Problem 13.1 Introduction: Background 13.1.1 Purpose of This Study: Benefits of Supervised ML-Based Predictive Models 13.1.2 Purpose of This Study: Challenges or Limitations 13.2 Method 13.2.1 Modules Used in modeFRONTIER 13.2.2 Accuracy Measurements 13.3 Results: Error Metrics for Various Supervised Machine Learning Models 13.3.1 Performance Analysis for Response Surfaces Schittkowski Test Cases (2-D) 1-24 13.3.2 Suggested Supervised ML-Based Method for Various Schittkowski Test Cases 13.4 KNIME Software: Schittkowski Test Problem 47 13.5 Conclusions 14. Case Study #14: Effect of Operating Parameters on Roll Force and Torque in an Industrial Rolling Mill: Supervised and Unsupervised Machine Learning Approach 14.1 Introduction: Rolling Data 14.2 Unsupervised Machine Learning: Self-Organizing Maps (SOMs) 14.3 Supervised Machine Learning: K-Nearest Neighbor Algorithm in modeFRONTIER 14.3.1 Variable Screening 14.3.2 Predictive Models Developed Through Supervised Machine Learning 14.4 KNIME: Random Forest Algorithm 14.5 Hierarchical Clustering Analysis (HCA) 14.6 Principal Component Analysis 14.7 Plate Mill: Multi-objective Optimization of YS, UTS and Elongation Percent of Micro-alloyed Steel Plates 14.8 Coiling: Multi-objective Optimization of YS, UTS and Elongation Percent of AHSS Coils 14.9 Conclusions 15. Case Study #15: Developing Predictive Models for Flow Stress by Utilizing Experimental Data Generated from Gleeble Testing Machine: Combined Experimental-Supervised Machine Learning Approach 15.1 Introduction: Thermomechanical Data from Gleeble Testing Machine 15.2 Supervised Machine Learning: Development of Predictive Model for Stress 15.2.1 Variable Screening 15.2.2 Development of Prediction Model for Stress 15.3 JMatPro Analysis and Comparison with Present Work 15.3.1 JMatPro Analysis 15.3.2 JMatPro Analysis and Experimental Results 15.3.3 Experiments, JMatPro Analysis, and Supervised Machine Learning 15.4 Distribution of Stress Studied Through Supervised Machine Learning Model Predictions 15.4.1 Prediction for New Experimental Parameters 15.4.2 Stress Mapping: Supervised Machine Learning Predictions 16. Computational Platforms Used in This Work 16.1 Computational Infrastructure 16.1.1 Computer for Artificial Intelligence (AI)-Based Work 16.1.2 CALPHAD-Based Work 16.1.3 Online Platforms Used for Generating Results 16.1.4 Android Phone (Redmi Note 7 Pro) 16.1.5 Apple iPhone 6S Plus 16.1.6 Supercomputer/High-Performance Computing (HPC) 16.2 ESTECO modeFRONTIER 16.3 MATLAB (MATLAB 2019) 16.3.1 Deep Learning Toolbox 16.3.2 PlatEMO: Evolutionary Multi-Objective Optimization (Tian et al. 2017) 16.4 Sigma Technologies: IOSO (Egorov 1998) 16.5 Cyberdyne: KIMEME 16.6 Python Programming Language Packages 16.6.1 TensorFlow and Keras: Open Source 16.6.2 PyTorch (Paszke et al. 2017) 16.7 R-Studio (R-Studio 2021) 16.8 IBM SPSS (IBM SPSS 2015) 16.9 WEKA: Open Source (Hall et al. 2009) 16.10 CITRINE Informatics (O'Mara et al. 2016) 16.11 KNIME (KNIME 2021) 16.12 RapidMiner (RapidMiner 2021) 16.13 Atomic Scale Simulation-Based Software 16.13.1 Materials Project (Jain et al. 2013) 16.13.2 Vienna Atomic Simulation Package (VASP) (VASP 2021) 16.13.3 Schrodinger Materials Science Suite (Bochevarov et al. 2013) 16.14 Case Study #16: Developing AI-Based Model for 100 Variable Problems in ABACUS AI 16.14.1 ABACUS AI: Open Source and Proprietary (Abacus AI 2021) 16.14.2 Deep Learning Model 16.15 Conclusions References Index