دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کوانتوم ویرایش: سری: ISBN (شابک) : 9780511516405, 0521860458 ناشر: Cambridge University Press سال نشر: 2009 تعداد صفحات: 605 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Approaches to quantum gravity: toward a new understanding of space, time, and matter به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهایی به گرانش کوانتومی: به سوی درک جدیدی از فضا، زمان و ماده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half-title Title Copyright Dedication Contents Contributors Preface Part I Fundamental ideas and general formalisms 1 Unfinished revolution 1.1 Quantum spacetime 1.1.1 Space 1.1.2 Time 1.1.3 Conceptual issues 1.2 Where are we? Bibliographical note References 2 The fundamental nature of space and time 2.1 Quantum Gravity as a non-renormalizable gauge theory 2.2 A prototype: gravitating point particles in 2 + 1 dimensions 2.3 Black holes, causality and locality 2.4 The only logical way out: deterministic quantum mechanics 2.5 Information loss and projection 2.6 The vacuum state and the cosmological constant 2.7 Gauge- and diffeomorphism invariance as emergent symmetries References 3 Does locality fail at intermediate length scales? 3.1 Three D’Alembertians for two-dimensional causets 3.1.1 First approach through the Green function 3.1.2 Retarded couplings along causal links 3.1.3 Damping the fluctuations 3.2 Higher dimensions 3.3 Continuous nonlocality, Fourier transforms and stability 3.3.1 Fourier transform methods more generally 3.4 What next? 3.5 How big is lambda0? Acknowledgements References 4 Prolegomena to any future Quantum Gravity 4.1 Introduction 4.1.1 Background dependence versus background independence 4.1.2 The primacy of process 4.1.3 Measurability analysis 4.1.4 Outline of the chapter 4.2 Choice of variables and initial value problems in classical electromagnetic theory 4.3 Choice of fundamental variables in classical GR 4.3.1 Metric and affine connection 4.3.2 Projective and conformal structures 4.4 The problem of Quantum Gravity 4.5 The nature of initial value problems in General Relativity 4.5.1 Constraints due to invariance under a function group 4.5.2 Non-dynamical structures and differential concomitants 4.6 Congruences of subspaces and initial-value problems in GR 4.6.1 Vector fields and three-plus-one initial value problems 4.6.2 Simple bivector fields and two-plus-two initial value problems 4.6.3 Dynamical decomposition of metric and connection 4.7 Background space-time symmetry groups 4.7.1 Non-maximal symmetry groups and partially fixed backgrounds 4.7.2 Small perturbations and the return of diffeomorphism invariance 4.7.3 Asymptotic symmetries 4.8 Conclusion Acknowledgements References 5 Spacetime symmetries in histories canonical gravity 5.1 Introduction 5.1.1 The principles of General Relativity 5.1.2 The histories theory programme 5.2 History Projection Operator theory 5.2.1 Consistent histories theory 5.2.2 HPO formalism – basics 5.2.3 Time evolution – the action operator Relativistic quantum field theory 5.3 General Relativity histories 5.3.1 Relation between spacetime and canonical description The representation of the group Diff(M) Canonical description 5.3.2 Invariance transformations Equivariance condition Relation between the invariance groups 5.3.3 Reduced state space 5.4 A spacetime approach to Quantum Gravity theory 5.4.1 Motivation 5.4.2 Towards a histories analogue of loop quantum gravity Acknowledgement References 6 Categorical geometry and the mathematical foundations of Quantum Gravity 6.1 Introduction 6.2 Some mathematical approaches to pointless space and spacetime 6.2.1 Categories in quantum physics Feynmanology 6.2.2 Grothendieck sites and topoi 6.2.3 Higher categories as spaces 6.2.4 Stacks and cosmoi 6.3 Physics in categorical spacetime 6.3.1 The BC categorical state sum model 6.3.2 Decoherent histories and topoi 6.3.3 Application of decoherent histories to the BC model 6.3.4 Causal sites 6.3.5 The 2-stack of Quantum Gravity? Further directions Acknowledgements References 7 Emergent relativity 7.1 Introduction 7.2 Two views of time 7.2.1 Fermi points 7.2.2 Quantum computation 7.3 Internal Relativity 7.3.1 Manifold matter 7.3.2 Metric from dynamics 7.3.3 The equivalence principle and the Einstein equations 7.3.4 Consequences 7.4 Conclusion References 8 Asymptotic safety 8.1 Introduction 8.2 The general notion of asymptotic safety 8.3 The case of gravity 8.4 The Gravitational Fixed Point 8.5 Other approaches and applications 8.6 Acknowledgements References 9 New directions in background independent Quantum Gravity 9.1 Introduction 9.2 Quantum Causal Histories 9.2.1 Example: locally evolving networks of quantum systems 9.2.2 The meaning of Gamma 9.3 Background independence 9.4 QCH as a discrete Quantum Field Theory 9.5 Background independent theories of quantum geometry 9.5.1 Advantages and challenges of quantum geometry theories 9.6 Background independent pre-geometric systems 9.6.1 The geometrogenesis picture 9.6.2 Advantages and challenges of pre-geometric theories 9.6.3 Conserved quantities in a BI system 9.7 Summary and conclusions References Questions and answers Part II String/M-theory 10 Gauge/gravity duality 10.1 Introduction 10.2 AdS/CFT duality 10.3 Lessons, generalizations, and open questions 10.3.1 Black holes and thermal physics 10.3.2 Background independence and emergence 10.3.3 Generalizations 10.3.4 Open questions Acknowledgments References 11 String theory, holography and Quantum Gravity 11.1 Introduction 11.2 Dynamical constraints 11.3 Quantum theory of de Sitter space 11.4 Summary References 12 String field theory 12.1 Introduction 12.2 Open string field theory (OSFT) 12.2.1 Witten’s cubic OSFT action 12.2.2 The Sen conjectures 12.2.3 Outstanding problems and issues in OSFT 12.3 Closed string field theory 12.4 Outlook Acknowledgements References Questions and answers Part III Loop quantum gravity and spin foam models 13 Loop quantum gravity 13.1 Introduction 13.2 Canonical quantisation of constrained systems 13.3 Loop quantum gravity 13.3.1 New variables and the algebra… 13.3.1.1 The quantum algebra…and its representations 13.3.1.2 Implementation and solution of the constraints 13.3.2 Outstanding problems and further results References 14 Covariant loop quantum gravity? 14.1 Introduction 14.2 Lorentz covariant canonical analysis 14.2.1 Second class constraints and the Dirac bracket 14.2.2 The choice of connection and the area spectrum 14.3 The covariant connection and projected spin networks 14.3.1 A continuous area spectrum 14.3.2 Projected spin networks 14.3.3 Simple spin networks 14.4 Going down to SU(2) loop gravity 14.5 Spin foams and the Barrett–Crane model 14.5.1 Gravity as a constrained topological theory 14.5.2 Simple spin networks again 14.5.3 The issue of the second class constraints 14.6 Concluding remarks References 15 The spin foam representation of loop quantum gravity 15.1 Introduction 15.2 The path integral for generally covariant systems 15.3 Spin foams in 3d Quantum Gravity 15.3.1 The classical theory 15.3.2 Spin foams from the Hamiltonian formulation 15.3.3 The spin foam representation 15.3.4 Quantum spacetime as gauge-histories 15.4 Spin foam models in four dimensions Spin foam representation of canonical LQG Spin foam representation in the Master Constraint Program Spin foam representation: the covariant perspective 15.4.1 The UV problem in the background independent context Acknowledgement References 16 Three-dimensional spin foam Quantum Gravity 16.1 Introduction 16.2 Classical gravity and matter 16.3 The Ponzano–Regge model 16.3.1 Gauge symmetry 16.4 Coupling matter to Quantum Gravity 16.4.1 Mathematical structure 16.5 Quantum Gravity Feynman rules 16.5.1 QFT as the semi-classical limit of QG 16.5.2 Star product 16.6 Effective non-commutative field theory 16.7 Non-planar diagrams 16.8 Generalizations and conclusion Acknowledgements References 17 The group field theory approach to Quantum Gravity 17.1 Introduction and motivation 17.2 The general formalism 17.3 Some group field theory models 17.4 Connections with other approaches 17.5 Outlook References Questions and answers Part IV Discrete Quantum Gravity 18 Quantum Gravity: the art of building spacetime 18.1 Introduction 18.2 Defining CDT 18.3 Numerical analysis of the model 18.3.1 The global dimension of spacetime 18.3.2 The effective action 18.3.3 Minisuperspace 18.4 Discussion Acknowledgments References 19 Quantum Regge calculus 19.1 Introduction 19.2 The earliest quantum Regge calculus: the Ponzano–Regge model 19.3 Quantum Regge calculus in four dimensions: analytic calculations 19.4 Regge calculus in quantum cosmology 19.5 Matter fields in Regge calculus and the measure 19.6 Numerical simulations of discrete gravity using Regge calculus 19.7 Canonical quantum Regge calculus 19.8 Conclusions Acknowledgements References 20 Consistent discretizations as a road to Quantum Gravity 20.1 Consistent discretizations: the basic idea 20.2 Consistent discretizations 20.3 Applications 20.3.1 Classical relativity 20.3.2 The problem of time 20.3.3 Cosmological applications 20.3.4 Fundamental decoherence, black hole information puzzle, limitations to quantum computing 20.4 Constructing the quantum theory 20.5 The quantum continuum limit 20.6 Summary and outlook References 21 The causal set approach to Quantum Gravity 21.1 The causal set approach 21.1.1 Arguments for spacetime discreteness 21.1.2 What kind of discreteness? 21.1.3 The continuum approximation 21.1.4 Reconstructing the continuum 21.1.5 Lorentz invariance and discreteness 21.1.6 LLI and discreteness in other approaches 21.2 Causal set dynamics 21.2.1 Growth models 21.2.2 Actions and amplitudes 21.3 Causal set phenomenology 21.3.1 Predicting Lambda 21.3.2 Swerving particles and almost local fields 21.4 Conclusions References Questions and answers Part V Effective models and Quantum Gravity phenomenology 22 Quantum Gravity phenomenology 22.1 The “Quantum Gravity problem”, as seen by a phenomenologist 22.1.1 Quantum Gravity phenomenology exists 22.1.2 Task one accomplished: some effects introduced genuinely at the Planck scale could be seen 22.1.3 Concerning task two 22.1.4 Neutrinos and task three 22.2 Concerning Quantum Gravity effects and the status of Quantum Gravity theories 22.2.1 Planck-scale departures from classical spacetime symmetries 22.2.2 Planck-scale departures from CPT symmetry 22.2.3 Distance fuzziness and spacetime foam 22.2.4 Decoherence 22.2.5 Planck-scale departures from the equivalence principle 22.2.6 Critical-dimension superstring theory 22.2.7 Loop quantum gravity 22.2.8 Approaches based on noncommutative geometry 22.3 On the status of different areas of Quantum Gravity phenomenology 22.3.1 Planck-scale modifications of Poincaré symmetries 22.3.2 Planck-scale modifications of CPT symmetry and decoherence 22.3.3 Distance fuzziness and spacetime foam 22.3.4 Decoherence 22.3.5 Planck-scale departures from the equivalence principle 22.4 Aside on doubly special relativity: DSR as seen by the phenomenologist 22.4.1 Motivation 22.4.2 Defining the DSR scenario 22.5 More on the phenomenology of departures from Poincaré symmetry 22.5.1 On the test theories with modified dispersion relation 22.5.2 Photon stability 22.5.3 Threshold anomalies 22.5.4 Time-of-travel analyses 22.5.5 Synchrotron radiation 22.6 Closing remarks References 23 Quantum Gravity and precision tests 23.1 Introduction 23.2 Non-renormalizability and the low-energy approximation 23.2.1 A toy model 23.2.1.1 Spectrum and scattering 23.2.1.2 The low-energy effective theory 23.2.2 Computing loops 23.2.3 The effective Lagrangian logic 23.3 Gravity as an effective theory 23.3.1 The effective action 23.3.2 Power counting 23.4 Summary Acknowledgements References 24 Algebraic approach to Quantum Gravity II: noncommutative spacetime 24.1 Introduction 24.2 Basic framework of NCG 24.3 Bicrossproduct quantum groups and matched pairs 24.3.1 Nonlinear factorisation in the 2D bicrossproduct model 24.3.2 Bicrossproduct Ulambda (poinc1,1) quantum group 24.3.3 Bicrossproduct Clambda[Poinc] quantum group 24.4 Noncommutative spacetime, plane waves and calculus 24.5 Physical interpretation 24.5.1 Prequantum states and quantum change of frames 24.5.2 The …-product, classicalisation and effective actions 24.6 Other noncommutative spacetime models References 25 Doubly special relativity 25.1 Introduction: what is DSR? 25.2 Gravity as the origin of DSR 25.3 Gravity in 2+1 dimensions as DSR theory 25.4 Four dimensional field theory with curved momentum space 25.5 DSR phenomenology 25.6 DSR – facts and prospects Acknowledgement References 26 From quantum reference frames to deformed special relativity 26.1 Introduction 26.2 Physics of Quantum Gravity: quantum reference frame 26.3 Semiclassical spacetimes 26.3.1 Modified measurement 26.3.2 Spacetimes reconstruction 26.3.2.1 Finsler geometry 26.3.2.2 Extended phase space 26.3.3 Multiparticles states 26.4 Conclusion Acknowledgements References 27 Lorentz invariance violation and its role in Quantum Gravity phenomenology 27.1 Introduction 27.2 Phenomenological models 27.3 Model calculation 27.4 Effective long-distance theories 27.5 Difficulties with the phenomenological models 27.6 Direct searches 27.7 Evading the naturalness argument within QFT 27.8 Cutoffs in QFT and the physical regularization problem 27.9 Discussion Acknowledgments References 28 Generic predictions of quantum theories of gravity 28.1 Introduction 28.2 Assumptions of background independent theories 28.3 Well studied generic consequences 28.3.1 Discreteness of quantum geometry and ultraviolet finiteness 28.3.2 Elimination of spacetime singularities 28.3.3 Entropy of black hole and cosmological horizons 28.3.4 Heat and the cosmological constant 28.4 The problem of the emergence of classical spacetime 28.5 Possible new generic consequences 28.5.1 Deformed Special Relativity 28.5.2 Emergent matter 28.5.3 Disordered locality 28.5.4 Disordered locality and the CMB spectrum 28.6 Conclusions Acknowledgements References Questions and answers Index