ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applied Inorganic Chemistry

دانلود کتاب شیمی معدنی کاربردی

Applied Inorganic Chemistry

مشخصات کتاب

Applied Inorganic Chemistry

ویرایش: [Volume 2: From Energy Storage to Photofunctional Materials] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9783110798784, 2022935001 
ناشر: De Gruyter 
سال نشر: 2023 
تعداد صفحات: [527] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 59,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Applied Inorganic Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی معدنی کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Also of interest
Applied Inorganic Chemistry. Volume 2: From Energy Storage to Photofunctional Materials
Copyright
Preface
Contents
List of contributors
5. Energy storage and conversion
	5.1 Battery materials
		5.1.1 The lead acid battery
		5.1.2 The alkaline battery
		5.1.3 The nickel-cadmium and nickel-metal-hydride type
		5.1.4 The lithium ion battery
		5.1.5 The solid-state battery
		5.1.6 Summary
		References
	5.2 Magnetocaloric materials
		5.2.1 What is the magnetocaloric effect and what makes some materials promising?
		5.2.2 Magnetocaloric materials for cryogenics
			5.2.2.1 Non-metallic compounds
			5.2.2.2 Intermetallic compounds
		5.2.3 Magnetocaloric materials for near-room temperature applications
			5.2.3.1 Gd
			5.2.3.2 Gd5Si2Ge2
			5.3.2.3 FeRh
			5.3.2.4 LaFe13–xSix-based compounds and their hydrides
			5.3.2.5 Fe2P-type materials
			5.3.2.6 Heusler alloys
			5.3.2.7 Transition metal-based compounds with Ni2In/TiNiSi structural transformation
		References
	5.3 Materials for thermoelectric devices
		5.3.1 Low temperature and refrigeration materials
		5.3.2 Mid-temperature thermoelectrics
		5.3.3 High-temperature thermoelectric materials
		5.3.4 Novel thermoelectric materials
		5.3.5 Summary
		References
	5.4 Hydrogen storage materials
		5.4.1 Principles of hydrogen storage and requirements
		5.4.2 Storage as gaseous hydrogen: gas tanks, pipelines and caverns
		5.4.3 Storage as liquid hydrogen: cryotanks
		5.4.4 Storage as adsorbed (physisorbed) hydrogen: porous materials
		5.4.5 Storage as absorbed (chemisorbed) hydrogen: metal hydrides
			5.4.5.1 Transition metal-based intermetallic and complex hydrides
			5.4.5.2 Magnesium-based hydrogen storage materials
			5.4.5.3 Alanates and boranates
			5.4.5.4 Amides, imides, nitrides: hydrogen storage in metal-N-H systems
			5.4.5.5 Zintl phases and their hydrides
			5.4.6 Storage in molecules
			5.4.7 Conclusion: current and future challenges of hydrogen storage
		References
	5.5 Solar cell materials
		5.5.1 A short history of crystalline silicon solar cells
		5.5.2 Technology of crystalline silicon solar cells
			5.5.2.1 Principle of the structure
			5.5.2.2 What happens in the individual cell regions?
			5.5.2.3 Production of crystalline silicon cells
				5.5.2.3.1 From sand to silicon
				5.5.2.3.2 Production of monocrystalline silicon
				5.5.2.3.3 Production of multicrystalline silicon
				5.5.2.3.4 Wafer production
				5.5.2.3.5 Solar cell production
		5.5.3 Thin-film cells
			5.5.3.1 Amorphous silicon solar cells
			5.5.3.2 CIS cells
			5.5.3.3 Cells from cadmium telluride
		5.5.4 Conclusions
		References
	5.6 Thermal energy storage materials
		5.6.1 Solids
		5.6.2 Water
		5.6.3 Salts
		References
	5.7 High-energy materials
		5.7.1 Inorganic explosives
			5.7.1.1 Primary explosives
			5.7.1.2 Secondary explosives
		5.7.2 Inorganic rocket fuels
			5.7.2.1 Solid propellants
			5.7.2.2 Liquid propellants
		References
	5.8 Nuclear materials
		5.8.1 Nuclear fuels
		5.8.2 Nuclear batteries
		5.8.3 Nuclear waste
		References
6. Ionic solids
	6.1 Resources: minerals, recycling and urban mining
		6.1.1 Lithium recovery from mineral ore and lithium batteries: a selective approach via the COOL process
			6.1.1.1 Lithium deposits and extraction processes
			6.1.1.2 Lithium batteries [20]
		6.1.2 Phosphate recovery from phosphate rock and sewage: a selective approach via the PARFORCE process
		6.1.3 Rare earth recovery from end-of-life products
			6.1.3.1 Fluorescent lamps (Sepselsa process)
			6.1.3.2 Permanent magnets (MagnetoRec process)
		References
	6.2 Phosphates
		6.2.1 Phosphate reserves/resources, need and recovery
		6.2.2 Phosphoric acid
		6.2.3 Phosphate anions: From isolated orthophosphate to 3D networks
		6.2.4 Monophosphates
		6.2.5 Condensed sodium phosphates: synthesis and properties
		6.2.6 Condensed phosphates: applications
		6.2.7 Ammonium phosphates
		6.2.8 Phosphates of the alkaline earth metals, boron and aluminum
		6.2.9 Transition metal phosphates
			6.2.9.1 Phosphates as color pigments
			6.2.9.2 Titanium(IV) phosphates
			6.2.9.3 Vanadyl(IV) pyrophosphate
		6.2.10 Phosphates in electrochemical applications
		References
	6.3 Borate applications
		6.3.1 Adhesives
		6.3.2 Agriculture
		6.3.3 Energy storage
		6.3.4 Glass, fibers and insulation
		6.3.5 Cleaning compounds
		6.3.6 Protection of fire, fungi and pests
		6.3.7 Metallurgy
		6.3.8 Nuclear applications
		6.3.9 Medicine
		6.3.10 Oilfield chemical applications
		6.3.11 Industrial fluids
		6.3.12 Optical applications
			6.3.12.1 Phosphors
			6.3.12.2 Nonlinear optical materials
			6.3.12.3 Laser materials
			6.3.12.4 Birefringent materials
		References
	6.4 Slags as materials resource
		6.4.1 Ferrous slag
		6.4.2 Aluminum salt slag
		6.4.3 Copper slag
		6.4.4 Lead slag
		6.4.5 Further metal slags
		6.4.6 Incineration slag
		6.4.7 Perspectives: bioleaching
		References
	6.5 Salts in nutrition products
		6.5.1 Food additives
			6.5.1.1 Sodium chloride
			6.5.1.2 Sodium nitrite and sodium nitrate
			6.5.1.3 Ammonium and sodium carbonates
			6.5.1.4 Ammonium chloride
			6.5.1.5 Sulfites and sulfur dioxide
			6.5.1.6 Phosphates and phosphoric acid
			6.5.1.7 Silicates and ferrocyanides
		6.5.2 Fortification and enrichment
			6.5.2.1 Iron
			6.5.2.2 Iodine
			6.5.2.3 Zinc
			6.5.2.4 Fluorine
		6.5.3 Mineral salts in food supplements
		References
	6.6 Fertilizers
		6.6.1 History
		6.6.2 Plant nutrients (macro)
			6.6.2.1 Carbon, hydrogen and oxygen
			6.6.2.2 Nitrogen
			6.6.2.3 Phosphorus
			6.6.2.4 Potash/potassium/kalium
			6.6.2.5 Secondary macronutrients (Mg, Ca, S)
		6.6.3 Plant nutrients (micro)
		6.6.4 Soil pH and redox potential [1]
		6.6.5 Fertilizer specialties
		6.6.6 Future developments and concluding remarks
		References
	6.7 Natural and synthetic gemstones
		6.7.1 Color of gemstones
			6.7.1.1 Oxygen to metal charge transfer (OMCT)
			6.7.1.2 Metal to metal charge transfer (MMCT)
			6.7.1.3 d-d-Transitions
				6.7.1.3.1 Crystal field splitting
		6.7.2 The corundum group (α-Al2O3, trigonal)
			6.7.2.1 Ruby
			6.7.2.2 Ti3+ Sapphire
			6.7.2.3 Technical sapphire (α-Al2O3)
				6.7.2.3.1 Verneuil sapphire
				6.7.2.3.2 Czochralski sapphire
				6.7.2.3.3 Heat exchanger method (HEM) sapphire
				6.7.2.3.4 Kyropoulos sapphire
		6.7.3 The quartz group
			6.7.3.1 Piezo quartz
			6.7.3.2 Optical grade quartz
			6.7.3.3 Hydrothermal growth of synthetic quartz
		References
7. Catalytic and active framework materials
	7.1 Homogeneous catalysis
		7.1.1 Introduction
		7.1.2 Syntheses of catalysts for homogeneous catalysis
		7.1.3 Characterization of catalysts for homogeneous catalysis
		7.1.4 Industrial application of inorganic acids, bases and metal complexes
		7.1.5 Phase-transfer catalysis with inorganic frameworks and polymers
		7.1.6 Thermodynamics and kinetics in homogeneous catalysis
		References
	7.2 Heterogeneous catalysts
		7.2.1 Introduction
		7.2.2 Syntheses of heterogeneous catalysts
		7.2.3 Characterization of heterogeneous catalysts
		7.2.4 Kinetics of heterogeneously catalyzed reactions
		References
	7.3 Zeolites for ion exchange, adsorption and catalysis
		7.3.1 Structures of selected zeolite frameworks: setting the scene
		7.3.2 Zeolites as ion exchangers in detergents
		7.3.3 Adsorption and separation processes fostered by strong electrostatic interactions
		7.3.4 Catalysis
		7.3.5 Summary and outlook
		References
	7.4 Metal-organic frameworks
		7.4.1 Selected MOF structures
		7.4.2 General MOF properties
		7.4.3 Potential applications of MOFs
		References
8. Photofunctional materials
	8.1 Solid-state lighting materials
		8.1.1 Historical development
		8.1.2 Technology of LEDs
		8.1.3 Semiconductor materials
		8.1.4 Luminescent materials
		8.1.5 White LEDs
		8.1.6 Application areas of LEDs
		8.1.7 The future of LEDs
		References
	8.2 Upconverters
		8.2.1 Historical remarks
		8.2.2 Upconversion mechanisms
			8.2.2.1 Anti-Stokes
			8.2.2.2 Two-photon excitation
			8.2.2.3 Cooperative luminescence
			8.2.2.4 Cooperative sensitization
			8.2.2.5 Excited state absorption (ESA)
			8.2.2.6 Energy transfer upconversion (ETU)
			8.2.2.7 Sensitized energy transfer upconversion (sensitized ETU)
		8.2.3 Applications areas of upconverters
			8.2.3.1 Diagnostics
			8.2.3.2 Therapy
			8.2.3.3 Anti-counterfeiting
			8.2.3.4 Photovoltaics
		8.2.4 Remaining issues
		8.2.5 Outlook
		References
	8.3 Organometallic Ir(III) and Pt(II) complexes in phosphorescent OLEDs: an industrial perspective
		8.3.1 Introduction
			8.3.1.1 The OLED working principle
			8.3.1.2 Organometallic triplet emitters: a milestone in the history of OLED
		8.3.2 OLED emitter materials based on organometallic complexes
			8.3.2.1 Highly efficient green and red complexes as phosphorescent emitters comprising Ir(III) or Pt(II) centers
			8.3.2.2 Stable and blue phosphorescent Ir(III) and Pt(II) emitters
		8.3.3 Industrial relevance and next generation approaches
		References
	8.4 Luminescent thermometry materials
		8.4.1 Phosphors activated with trivalent lanthanide ions
		8.4.2 Phosphors activated with divalent lanthanide ions
		8.4.3 Phosphors activated with transition metal ions
		8.4.4 Phosphors with two luminescent activator ions
		8.4.5 Semiconductor quantum dots
		References
	8.5 Crystals for solid-state lasers
		8.5.1 Introduction
		8.5.2 Crystal properties relevant for solid-state lasers
			8.5.2.1 The doping ion site
			8.5.2.2 Transparency
			8.5.2.3 Thermal conductivity and phonon energies
			8.5.2.4 Crystal field strength
			8.5.2.5 Further thermal and mechanical properties
		8.5.3 Growth of laser crystals
		8.5.4 Common laser host materials
			8.5.4.1 Oxide host materials
				8.5.4.1.1 Garnets
				8.5.4.1.2 Perovskites
				8.5.4.1.3 Double tungstates
				8.5.4.1.4 Vanadates
				8.5.4.1.5 Sesquioxides
				8.5.4.1.6 Aluminates
			8.5.4.2 Fluoride host materials
				8.5.4.2.1 Scheelites
				8.5.4.2.2 Fluorites
			8.5.4.3 Host materials for transition metals
				8.5.4.3.1 Sapphire
				8.5.4.3.2 Chrysoberyl (Alexandrite)
				8.5.4.3.3 Forsterite
				8.5.4.3.4 Colquiriites
				8.5.4.3.5 Chalcogenides
		8.5.5 Materials properties of laser host crystals
		References
	8.6 NLO materials
		8.6.1 Introduction
		8.6.2 Borates
			8.6.2.1 Borates
				8.6.2.1.1 LiB3O5 (LBO)
				8.6.2.1.2 β-BaB2O4 (β-BBO)
				8.6.2.1.3 CsB3O5 (CBO)
				8.6.2.1.4 CsLiB6O10 (CLBO)
				8.6.2.1.5 K2Al2B2O7 (KABO)
			8.6.2.2 Borate halides
				8.6.2.2.1 KBe2BO3F2 (KBBF)
				8.6.2.2.2 RbBe2(BO3)F2 (RBBF)
				8.6.2.2.3 CsBe2BO3F2 (CBBF) [72]
				8.6.2.2.4 K3B6O10Cl (KBOC)
				8.6.2.2.5 K3B6O10Br (KBOB)
			8.6.2.3 Fluorooxoborates
				8.6.2.3.1 NH4B4O6F (ABF)
				8.6.2.3.2 MB5O7F3 (M = Sr, Ca, Mg)
		8.6.3 Phosphates
			8.6.3.1 Phosphates
				8.6.3.1.1 KH2PO4 (KDP), KD2PO4 (DKDP) and NH4H2PO4 (ADP)
				8.6.3.1.2 KTiOPO4 (KTP)
			8.6.3.2 Fluorooxophosphates
		8.6.4 Carbonates
			8.6.4.1 LiNaCO3 (LNC)
			8.6.4.2 KSrCO3F and the ABCO3F family
		8.6.5 Sulfates
			8.6.5.1 Li2SO4·H2O (LS) [127, 128]
		8.6.6 Iodates
			8.6.6.1 α-LiIO3
			8.6.6.2 α-iodic acid: HIO3
		8.6.7 Niobates
			8.6.7.1 LiNbO3 (LN)
			8.6.7.2 KNbO3 (KN)
		8.6.8 Pnictides
			8.6.8.1 GaAs
			8.6.8.2 ZnGeP2 (ZGP)
			8.6.8.3 CdSiP2 (CSP)
		8.6.9 Chalcogenides
			8.6.9.1 AgGaS2 (AGS) and AgGaSe2
			8.6.9.2 CdSe
			8.6.9.3 GaSe
			8.6.9.4 LiInS2
			8.6.9.5 BaGa4S7 and BaGa4Se7 [195, 196]
		References
	8.7 Excimer, mercury and sodium dischargers
		8.7.1 Introduction
		8.7.2 Gas discharges
			8.7.2.1 Thermal and non-thermal plasma
			8.7.2.2 Low-pressure glow discharges
				8.7.2.2.1 Low-pressure sodium and mercury discharges
					8.7.2.2.1.1 Low-pressure sodium lamps (LPS)
					8.7.2.2.1.2 Low-pressure mercury lamps (LPM)
			8.7.2.3 Discharges in dense gases
				8.7.2.3.1 Arc discharges: medium and high-pressure mercury and sodium discharges
				8.7.2.3.2 Dielectric barrier discharges and excimers
					8.7.2.3.2.1 Excimers
						8.7.2.3.2.1.1 Rare gas excimers
						8.7.2.3.2.1.2 Rare gas halogen excimers and halogen dimers
						8.7.2.3.2.1.3 Efficiency of excimer systems
		8.7.3 Outlook: applications of excimer lamps
		References
	8.8 Inorganic scintillators
		8.8.1 Introduction and history
		8.8.2 Physics of scintillators
		8.8.3 Application areas of scintillators
		8.8.4 Established scintillators and their properties
		8.8.5 Outlook
		References
Subject index
Formula index




نظرات کاربران