ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications

دانلود کتاب علم داده کاربردی در گردشگری: رویکردهای میان رشته ای، روش ها و کاربردها

Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications

مشخصات کتاب

Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications

ویرایش:  
نویسندگان:   
سری: Tourism on the Verge 
ISBN (شابک) : 3030883884, 9783030883881 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 667
[647] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علم داده کاربردی در گردشگری: رویکردهای میان رشته ای، روش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب علم داده کاربردی در گردشگری: رویکردهای میان رشته ای، روش ها و کاربردها

دسترسی به مجموعه داده های بزرگ منجر به تغییر پارادایم در چشم انداز تحقیقات گردشگری شده است. کلان داده شکل جدیدی از کسب دانش را ممکن می‌سازد و در عین حال پایه‌های معرفت‌شناختی را متزلزل می‌کند و به روش‌ها و رویکردهای تحلیلی جدیدی نیاز دارد. این امکان همکاری بین رشته ای بین علوم کامپیوتر و علوم اجتماعی و اقتصادی را فراهم می کند و رویکردهای تحقیقاتی سنتی را تکمیل می کند. این کتاب مبنای وسیعی را برای کاربرد عملی رویکردهای علم داده مانند یادگیری ماشینی، متن کاوی، تجزیه و تحلیل شبکه های اجتماعی و بسیاری موارد دیگر که برای تحقیقات گردشگری بین رشته ای ضروری هستند، فراهم می کند. هر روش به طور اصولی ارائه می شود، به صورت تحلیلی مشاهده می شود و مزایا و معایب آن سنجیده می شود و زمینه های کاربردی معمولی ارائه می شود. کاربرد روشی صحیح با رویکرد \"چگونه\" همراه با نمونه‌های کد ارائه می‌شود که به یک پایگاه خوانندگان گسترده‌تر از جمله محققان، پزشکان و دانشجویانی که وارد میدان می‌شوند اجازه می‌دهد.

این کتاب مقدمه ای بسیار ساختار یافته برای علم داده – نه تنها در گردشگری – و مبانی روش شناختی آن است که با موارد عملی به خوبی انتخاب شده همراه است. این بر بینش مهمی تأکید می کند: داده ها فقط بازنمایی واقعیت هستند، برای به دست آوردن دانش از آنها به مهارت های روش شناختی و پیشینه دامنه نیاز دارید

هانس ورتنر، دانشگاه صنعتی وین
 
رومن ایگر یک کار دشوار اما ضروری را انجام داده است: روشن کردن چگونه علم داده می تواند به طور عملی تحقیقات و برنامه های کاربردی سفر و گردشگری را پشتیبانی و تقویت کند. این کتاب مجموعه‌ای از فصل‌ها را ارائه می‌دهد که به خوبی آموزش داده شده است که گزارشی جامع و عمیق از هوش مصنوعی و علم داده برای گردشگری ارائه می‌دهد

فرانچسکو ریچی، دانشگاه آزاد Bozen-Bolzano
 
این کتاب ساختار یافته و آسان برای خواندن یک نمای کلی جامع ارائه می دهد. علم داده در گردشگری این تا حد زیادی به مخزن روش شناختی فراتر از روش های سنتی کمک می کند.

- راب قانون، دانشگاه ماکائو


توضیحاتی درمورد کتاب به خارجی

Access to large data sets has led to a paradigm shift in the tourism research landscape. Big data is enabling a new form of knowledge gain, while at the same time shaking the epistemological foundations and requiring new methods and analysis approaches. It allows for interdisciplinary cooperation between computer sciences and social and economic sciences, and complements the traditional research approaches. This book provides a broad basis for the practical application of data science approaches such as machine learning, text mining, social network analysis, and many more, which are essential for interdisciplinary tourism research. Each method is presented in principle, viewed analytically, and its advantages and disadvantages are weighed up and typical fields of application are presented. The correct methodical application is presented with a "how-to" approach, together with code examples, allowing a wider reader base including researchers, practitioners, and students entering the field. 

The book is a very well-structured introduction to data science – not only in tourism – and its methodological foundations, accompanied by well-chosen practical cases. It underlines an important insight: data are only representations of reality, you need methodological skills and domain background to derive knowledge from them

Hannes Werthner, Vienna University of Technology
 
Roman Egger has accomplished a difficult but necessary task: make clear how data science can practically support and foster travel and tourism research and applications. The book offers a well-taught collection of chapters giving a comprehensive and deep account of AI and data science for tourism

Francesco Ricci, Free University of Bozen-Bolzano
 
This well-structured and easy-to-read book provides a comprehensive overview of data science in tourism. It contributes largely to the methodological repository beyond traditional methods.

- Rob Law, University of Macau



فهرست مطالب

Preface
	Purpose of the Book and Potential Audience
	What This Book Is Not!
	Features of This Book
Acknowledgments
Contents
Notes on Contributors
Abbreviations and Acronyms
Introduction: Data Science in Tourism
	A Brief Introduction and the Structure of This Book
	Data Science and Tourism
	Data Science in Tourism and the Structure of This Book
		Chapters 1-5: Theoretical Fundamentals
		Chapters 6-14: Machine Learning
		Chapters 15-20: Natural Language Processing
		Chapters 21-26: Additional Methods
	Conclusion
	References
Industry Insights from Data Scientists: QandA Session
	Interview 1
	Interview 2
	Interview 3
	Interview 4
	Interview 5
	Concluding Remarks
Part I: Theoretical Fundaments
	AI and Big Data in Tourism
		1 Introduction
		2 AI, Machine Learning, and Data Science
		3 AI for Big Data
			3.1 AI for Problem Framing
			3.2 AI for Data Gathering
			3.3 AI for Data Cleaning and Preparation
			3.4 AI for Data Processing
			3.5 AI for Data Exploitation
		4 AI and Big Data in Tourism
		Further Readings
		Other Sources
		References
	Epistemological Challenges
		1 Introduction
		2 Epistemological Evolution
		3 Epistemological Challenges: Data Science in Tourism Research
			3.1 Topic Formulation and Relevance for Academia and Industry
			3.2 Data and Its Access and Collection
			3.3 Data Pre-processing
			3.4 Feature Engineering
			3.5 Data Analysis
			3.6 Model Evaluation and Model Tuning
			3.7 Interpretation of Results
		4 Conclusion
		References
	Data Science and Interdisciplinarity
		1 Introduction
		2 Problem Identification
		3 Data Science Is an Interdisciplinary Area
		4 The Importance of Core Competencies in Data Science
		5 Conclusion
		References
	Data Science and Ethical Issues
		1 Introduction
		2 Ethics
			2.1 Data Science and Ethics
		3 Data Science Ethics Issues
			3.1 Privacy
			3.2 Data Validity
			3.3 Algorithm Fairness and Bias
		4 Big Data
		5 Artificial Intelligence and Machine Learning
		6 Conclusion
		References
	Web Scraping
		1 Introduction and Theoretical Foundations
			1.1 Open Data
			1.2 APIs
			1.3 Scraping Data
			1.4 Legal Perspectives of Text and Data Mining
			1.5 Typical Use Cases of Web Scraping in Tourism
			1.6 BeautifulSoup
			1.7 Selenium
			1.8 Scrapy
		2 Practical Demonstration
		Further Readings and Other Sources
			Blogposts
		References
Part II: Machine Learning
	Machine Learning in Tourism: A Brief Overview
		1 Introduction and Theoretical Foundations
			1.1 The Machine Learning Process
			1.2 Unsupervised Learning
				1.2.1 Clustering
				1.2.2 Dimensionality Reduction
			1.3 Supervised Learning
				1.3.1 Classification
				1.3.2 Regression
			1.4 Reinforcement Learning
			1.5 Neural Networks
			1.6 Machine Learning Limitations and Challenges
			1.7 Auto-ML
		Further Readings and Other Sources
		References
	Feature Engineering
		1 Introduction
			1.1 Definitions
			1.2 Feature Engineering Cycle
		2 Combining Features
			2.1 Normalization
			2.2 Discretization
			2.3 Missing Data
			2.4 Descriptive Features
		3 Reducing Features
			3.1 Feature Importance
			3.2 Feature Selection
		4 Expanding Features
			4.1 Computable Features
			4.2 One-Hot Encoding
			4.3 Decomposing Complex Features
			4.4 External Data
		5 Practical Demonstration: Airbnb Pricing
			5.1 Dataset and EDA
			5.2 Data Split
			5.3 Feature Transformers
			5.4 Indexing Categorical Features
			5.5 Set Features: Amenities and Host Verifications
			5.6 Decomposing Complex Features: host_since
			5.7 EDA
			5.8 Imputation
			5.9 Base Model
			5.10 First Iteration
			5.11 Feature Selection: Dropping Amenities
			5.12 Second Iteration
			5.13 Expanding Using External Data: SkyTrain Stations
			5.14 Case Study Wrap-Up
		6 Conclusions
		Further Readings and Other Sources
		References
	Clustering
		1 Introduction and Theoretical Foundations
			1.1 Hierarchical Cluster Analysis
			1.2 Partitioning
			1.3 Density-Based Spatial Clustering of Applications with Noise
			1.4 Cluster Evaluation and Profiling
		2 Practical Demonstration
			2.1 k-Means Clustering
			2.2 Hierarchical Clustering
				2.2.1 Top-Down Clustering
				2.2.2 Agglomerative (Bottom-Up) Clustering
				2.2.3 DBSCAN
		3 Research-Case
		References
	Dimensionality Reduction
		1 Introduction and Theoretical Foundations
			1.1 PCA
			1.2 tSNE
			1.3 UMAP
		2 Practical Demonstration
		Further Readings and Other Sources
		References
	Classification
		1 Introduction and Theoretical Foundations
			1.1 Motivation and Basic Concepts
			1.2 Evaluation
				1.2.1 Generalization Error
				1.2.2 Hold-Out Method and Cross Validation
				1.2.3 Hyperparameter Selection
				1.2.4 Evaluation Measures
					Confusion Matrix and Evaluation Measures Computed Therefrom
					ROC Analysis
					Categorical Cross-Entropy
			1.3 Data Preprocessing
				1.3.1 One-Hot Encoding
				1.3.2 Feature Scaling/Normalization
				1.3.3 Projection Methods
				1.3.4 Missing Values Imputation
				1.3.5 General Caveat
			1.4 Classification Methods
				1.4.1 K-Nearest Neighbor
					Advantages
					Disadvantages
				1.4.2 Logistic Regression
					Advantages
					Disadvantages
				1.4.3 Naïve Bayes
					Advantages
					Disadvantages
				1.4.4 Decision Trees
					Advantages
					Disadvantages
				1.4.5 Random Forest
					Advantages
					Disadvantages
				1.4.6 Gradient Tree Boosting
					Advantages
					Disadvantages
				1.4.7 Support Vector Machines
					Advantages
					Disadvantages
				1.4.8 Artificial Neural Networks
					Advantages
					Disadvantages
		2 Practical Demonstration
			2.1 Use Case
			2.2 The Data Set
			2.3 Descriptive Analysis of the Raw Data Set
			2.4 Aggregation of Data: Creation of User Profiles
			2.5 Classification of Visitors: Model Building
				2.5.1 Summary of Results
			2.6 Application of the Models
		Further Readings and Other Sources
		References
	Regression
		1 Introduction and Theoretical Foundations
			1.1 Motivation and Basic Concepts
			1.2 Evaluation
			1.3 Regression Methods
				1.3.1 Linear Regression
					Advantages
					Disadvantages
				1.3.2 Regression Trees
					Advantages
					Disadvantages
				1.3.3 Regression Tree Ensembles
					Advantages
					Disadvantages
				1.3.4 Support Vector Regression
					Advantages
					Disadvantages
				1.3.5 Artificial Neural Networks
					Advantages
					Disadvantages
		2 Practical Demonstration
			2.1 Use Case
			2.2 The Data
			2.3 Splitting Training and Test Data
			2.4 Prediction of Visitors´ Turnover: Model Building
				2.4.1 Summary of Results
			2.5 Application of the Model
		Further Readings and Other Sources
		References
	Hyperparameter Tuning
		1 Introduction and Theoretical Foundations
			1.1 Motivations
			1.2 Techniques
				1.2.1 Manual Search
				1.2.2 Grid Search
				1.2.3 Random Search
				1.2.4 Bayesian Optimization
				1.2.5 Genetic Algorithms
			1.3 Summary
		2 Practical Demonstration
			2.1 Data Preprocessing and Visualization
			2.2 Modelling
				2.2.1 Manual Search
				2.2.2 Grid Search
				2.2.3 Random Search
				2.2.4 Bayesian Optimization
				2.2.5 Genetic Algorithms
				2.2.6 Conclusion
		3 Research Case
		Further Readings and Other Sources
		References
	Model Evaluation
		1 Introduction
		2 Performance of Classification Models
			2.1 Performance at Fixed Operating Conditions
				2.1.1 Classification Accuracy
				2.1.2 Recall (Sensitivity)
				2.1.3 Precision
				2.1.4 F1
				2.1.5 Specificity
			2.2 ROC Curves, P-R Curves
		3 Regression
			3.1 Evaluation Scores
				3.1.1 Mean Square Error (MSE)
				3.1.2 Root Mean Square Error (RMSE)
				3.1.3 Mean Absolute Error (MAE)
				3.1.4 Coefficient of Determination (R2)
		4 Overfitting
			4.1 Random Sampling
			4.2 Cross-Validation
			4.3 Leave-One-Out
		5 Practical Demonstration
			5.1 Confusion Matrix
			5.2 ROC Curve
			5.3 Lift Curve
			5.4 Data Over- or Undersampling
		6 Research Case
		Further Readings and Other Sources
		References
	Interpretability of Machine Learning Models
		1 Introduction and Theoretical Foundations
			1.1 Introduction to Explainability
			1.2 Why Are Some Models Uninterpretable?
			1.3 For Whom Can Explainability Be Useful or Necessary?
			1.4 Why Should One Care About the Interpretability of ML Systems?
				1.4.1 Providing Trust
				1.4.2 Complying to Regulations
				1.4.3 Understanding Predictions
				1.4.4 Creating Better Models
			1.5 Explainability Frameworks
				1.5.1 Model Agnostic Strategy
				1.5.2 LIME
				1.5.3 ELI5
				1.5.4 Anchors
				1.5.5 Counterfactuals
				1.5.6 SHAP
				1.5.7 Deep Learning
				1.5.8 Cloud Platforms
			1.6 Fairness and Adversarial Attacks
		2 Practical Demonstration
			2.1 Data Description
			2.2 Data Preparation
			2.3 Classification Model
			2.4 Explicability
				2.4.1 SHAP: Global Interpretation
				2.4.2 SHAP: Local Interpretation
				2.4.3 Lime
			2.5 Conclusions
		3 Research-Case
		Further Readings and Other Sources
		References
Part III: Natural Language Processing
	Natural Language Processing (NLP): An Introduction
		1 Introduction and Theoretical Foundations
		2 Text Analysis in Tourism
		3 NLP Techniques
		4 Text Preparation and Pre-processing
			4.1 Language Detection
			4.2 Tokenisation
			4.3 Lowercasing and Removal of Punctuation
			4.4 Expand Contractions
			4.5 Removal of Stop Words
			4.6 Removal of URLs, HTML Tags, and Emotions/Emojis
			4.7 Correction of Spelling
			4.8 Stemming and Lemmatisation
			4.9 Part of Speech Tagging (POS)
			4.10 Named Entity Recognition (NER)
			4.11 Feature Extraction
			4.12 Visual EDA
		5 Challenges of Working with Text
		6 Practical Demonstration
			6.1 Tips for Using Python for an NLP Study
		Further Readings and Other Sources
		References
	Text Representations and Word Embeddings
		1 Introduction and Theoretical Foundations
			1.1 One Hot Encoding
			1.2 Bag-of-Words (CountVectorizer)
			1.3 TF-IDF
			1.4 Word Embeddings
				1.4.1 Word2vec
				1.4.2 Doc2Vec
				1.4.3 fastText
				1.4.4 GloVe
				1.4.5 ELMo
				1.4.6 BERT
			1.5 Visualization of Multidimensional Data
			1.6 The Future of Embeddings
			1.7 Embeddings in Tourism-Related Research
		2 Practical Demonstration
			2.1 BOW
			2.2 TF-IDF
			2.3 Word2vec
			2.4 BERT
		Further Readings and Other Sources
		References
	Sentiment Analysis
		1 Introduction
		2 Theoretical Foundations
		3 Practical Demonstration
		4 Research Case 1: Lexicon-Based Sentiment Analysis
		5 Research Case 2: Machine Learning Sentiment Analysis
		Further Readings and Other Sources
		References
	Topic Modelling
		1 Introduction and Theoretical Foundations
		2 Topic Modelling Approaches
			2.1 Latent Dirichlet Allocation (LDA)
				2.1.1 LDA Hyperparameters
			2.2 Non-negative Matrix Factorisation (NMF)
			2.3 Correlation Explanation (CorEX)
			2.4 Top2Vec
			2.5 BERTopic
		3 Topic Modelling Limitations and Challenges
			3.1 Evaluating and Interpreting Topics
		4 Topic Modelling in Tourism Studies
		5 Topic Model Toolkits and Software Solutions
		6 Practical Demonstration
			6.1 LDA: Data Preparation and Preprocessing
			6.2 Topic Modelling with CorEx
		Further Readings and Other Sources
		References
	Entity Matching: Matching Entities Between Multiple Data Sources
		1 Introduction and Theoretical Foundations
			1.1 Entity Matching Problem Statement
			1.2 Entity Matching Examples in the Travel Industry
			1.3 Overview of the Stages of an Entity Matching Approach
		2 Practical Demonstration
			2.1 Data Formatting and Pre-processing
			2.2 Candidate Generation
			2.3 Record Pair Comparison (Threshold-based)
			2.4 Record Pair Comparison (Neural-based)
		3 Summary
		Further Readings and Other Sources
		References
	Knowledge Graphs
		1 Introduction and Theoretical Foundations
			1.1 Fundamentals
			1.2 Modeling the Domain
		2 Steps Toward Building a Tourism Knowledge Graph
			2.1 Knowledge Graph Construction
			2.2 Knowledge Graph Identification
			2.3 Storing, Querying, and Using the Knowledge Graph
		3 Practical Demonstration and How-To Guidelines
			3.1 Hints and Tips
		4 Research Case
		Further Readings and Other Sources
		References
Part IV: Additional Methods
	Network Analysis
		1 Introduction and Theoretical Foundations
			1.1 Network Analysis in a Nutshell
		2 Practical Demonstration
		3 A Worked Example
		4 Research-Case
		Further Readings and Other Sources
		References
	Time Series Analysis
		1 Introduction and Theoretical Foundations
		2 Practical Demonstration
			2.1 Research Case
			2.2 Forecasting Methods
				2.2.1 Seasonal Naïve
				2.2.2 Single Exponential Smoothing (SES)
				2.2.3 Error Trend Seasonal (ETS)
				2.2.4 Forecasting Combination Method
			2.3 Measures of Forecasting Accuracy
		3 Results
		Further Readings and Other Sources
		References
	Agent-Based Modelling
		1 Introduction and Theoretical Foundations
			1.1 Tourism as a Complex System
			1.2 ABM Benefits
			1.3 Background of ABM
			1.4 Key ABM Features
				1.4.1 Agents
				1.4.2 Environment
				1.4.3 System-level
				1.4.4 Interactions
			1.5 Challenges When Applying ABM
			1.6 Tourism-related ABM
		2 Practical Demonstration
			2.1 Defining the Model Purpose
			2.2 Conceptual Model Set-up
			2.3 Model Description
			2.4 Model Components
				2.4.1 Agents
				2.4.2 Environment
				2.4.3 System-Level Variables
				2.4.4 Simulated Time
				2.4.5 Interactions
			2.5 Software
			2.6 Analysis
				2.6.1 Verification
				2.6.2 Validation
				2.6.3 Analysing Findings
		3 Research Case
			3.1 Contribution of Method
			3.2 Analysis
		Further Readings and Other Sources
			Agent-Based Modelling
			Overview, Design Concepts, and Details (ODD) + Decision-making (ODD+D) Protocols
			Software Selection
			GIS
			Analysis
		References
	Geographic Information System (GIS)
		1 Introduction
		2 Theoretical Foundations
			2.1 Data
			2.2 Analysis
			2.3 Creating Maps
		3 Practical Demonstration
		Further Readings and Other Sources
			Books
			Websites
			Tourism Applications
		References
	Visual Data Analysis
		1 Introduction and Theoretical Foundations
			1.1 Data Visualization Techniques
			1.2 Data Analysis Workflow
			1.3 Data Visualization in the Data Analysis Workflow
		2 Demonstration
			2.1 Datasets
			2.2 Data Analysis Workflow
				2.2.1 Discover
				2.2.2 Wrangle
				2.2.3 Profile
				2.2.4 Model
				2.2.5 Report
		References
	Software and Tools
		1 RapidMiner (by Wolfram Höpken)
		2 Orange (by Ajda Pretnar)
		3 KNIME Analytics Platform (by Stefan Helfrich)
		4 WEKA (by Tony C Smith)
		5 SAS Viya (by Piere Paolo Ippolito)
		6 BigML (by BigML)
		7 Dataiku (by Laura Wiest)
		8 DataRobot (by DataRobot)
		References
Glossary
Index




نظرات کاربران