دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Roman Egger
سری: Tourism on the Verge
ISBN (شابک) : 3030883884, 9783030883881
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 667
[647]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده کاربردی در گردشگری: رویکردهای میان رشته ای، روش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Purpose of the Book and Potential Audience What This Book Is Not! Features of This Book Acknowledgments Contents Notes on Contributors Abbreviations and Acronyms Introduction: Data Science in Tourism A Brief Introduction and the Structure of This Book Data Science and Tourism Data Science in Tourism and the Structure of This Book Chapters 1-5: Theoretical Fundamentals Chapters 6-14: Machine Learning Chapters 15-20: Natural Language Processing Chapters 21-26: Additional Methods Conclusion References Industry Insights from Data Scientists: QandA Session Interview 1 Interview 2 Interview 3 Interview 4 Interview 5 Concluding Remarks Part I: Theoretical Fundaments AI and Big Data in Tourism 1 Introduction 2 AI, Machine Learning, and Data Science 3 AI for Big Data 3.1 AI for Problem Framing 3.2 AI for Data Gathering 3.3 AI for Data Cleaning and Preparation 3.4 AI for Data Processing 3.5 AI for Data Exploitation 4 AI and Big Data in Tourism Further Readings Other Sources References Epistemological Challenges 1 Introduction 2 Epistemological Evolution 3 Epistemological Challenges: Data Science in Tourism Research 3.1 Topic Formulation and Relevance for Academia and Industry 3.2 Data and Its Access and Collection 3.3 Data Pre-processing 3.4 Feature Engineering 3.5 Data Analysis 3.6 Model Evaluation and Model Tuning 3.7 Interpretation of Results 4 Conclusion References Data Science and Interdisciplinarity 1 Introduction 2 Problem Identification 3 Data Science Is an Interdisciplinary Area 4 The Importance of Core Competencies in Data Science 5 Conclusion References Data Science and Ethical Issues 1 Introduction 2 Ethics 2.1 Data Science and Ethics 3 Data Science Ethics Issues 3.1 Privacy 3.2 Data Validity 3.3 Algorithm Fairness and Bias 4 Big Data 5 Artificial Intelligence and Machine Learning 6 Conclusion References Web Scraping 1 Introduction and Theoretical Foundations 1.1 Open Data 1.2 APIs 1.3 Scraping Data 1.4 Legal Perspectives of Text and Data Mining 1.5 Typical Use Cases of Web Scraping in Tourism 1.6 BeautifulSoup 1.7 Selenium 1.8 Scrapy 2 Practical Demonstration Further Readings and Other Sources Blogposts References Part II: Machine Learning Machine Learning in Tourism: A Brief Overview 1 Introduction and Theoretical Foundations 1.1 The Machine Learning Process 1.2 Unsupervised Learning 1.2.1 Clustering 1.2.2 Dimensionality Reduction 1.3 Supervised Learning 1.3.1 Classification 1.3.2 Regression 1.4 Reinforcement Learning 1.5 Neural Networks 1.6 Machine Learning Limitations and Challenges 1.7 Auto-ML Further Readings and Other Sources References Feature Engineering 1 Introduction 1.1 Definitions 1.2 Feature Engineering Cycle 2 Combining Features 2.1 Normalization 2.2 Discretization 2.3 Missing Data 2.4 Descriptive Features 3 Reducing Features 3.1 Feature Importance 3.2 Feature Selection 4 Expanding Features 4.1 Computable Features 4.2 One-Hot Encoding 4.3 Decomposing Complex Features 4.4 External Data 5 Practical Demonstration: Airbnb Pricing 5.1 Dataset and EDA 5.2 Data Split 5.3 Feature Transformers 5.4 Indexing Categorical Features 5.5 Set Features: Amenities and Host Verifications 5.6 Decomposing Complex Features: host_since 5.7 EDA 5.8 Imputation 5.9 Base Model 5.10 First Iteration 5.11 Feature Selection: Dropping Amenities 5.12 Second Iteration 5.13 Expanding Using External Data: SkyTrain Stations 5.14 Case Study Wrap-Up 6 Conclusions Further Readings and Other Sources References Clustering 1 Introduction and Theoretical Foundations 1.1 Hierarchical Cluster Analysis 1.2 Partitioning 1.3 Density-Based Spatial Clustering of Applications with Noise 1.4 Cluster Evaluation and Profiling 2 Practical Demonstration 2.1 k-Means Clustering 2.2 Hierarchical Clustering 2.2.1 Top-Down Clustering 2.2.2 Agglomerative (Bottom-Up) Clustering 2.2.3 DBSCAN 3 Research-Case References Dimensionality Reduction 1 Introduction and Theoretical Foundations 1.1 PCA 1.2 tSNE 1.3 UMAP 2 Practical Demonstration Further Readings and Other Sources References Classification 1 Introduction and Theoretical Foundations 1.1 Motivation and Basic Concepts 1.2 Evaluation 1.2.1 Generalization Error 1.2.2 Hold-Out Method and Cross Validation 1.2.3 Hyperparameter Selection 1.2.4 Evaluation Measures Confusion Matrix and Evaluation Measures Computed Therefrom ROC Analysis Categorical Cross-Entropy 1.3 Data Preprocessing 1.3.1 One-Hot Encoding 1.3.2 Feature Scaling/Normalization 1.3.3 Projection Methods 1.3.4 Missing Values Imputation 1.3.5 General Caveat 1.4 Classification Methods 1.4.1 K-Nearest Neighbor Advantages Disadvantages 1.4.2 Logistic Regression Advantages Disadvantages 1.4.3 Naïve Bayes Advantages Disadvantages 1.4.4 Decision Trees Advantages Disadvantages 1.4.5 Random Forest Advantages Disadvantages 1.4.6 Gradient Tree Boosting Advantages Disadvantages 1.4.7 Support Vector Machines Advantages Disadvantages 1.4.8 Artificial Neural Networks Advantages Disadvantages 2 Practical Demonstration 2.1 Use Case 2.2 The Data Set 2.3 Descriptive Analysis of the Raw Data Set 2.4 Aggregation of Data: Creation of User Profiles 2.5 Classification of Visitors: Model Building 2.5.1 Summary of Results 2.6 Application of the Models Further Readings and Other Sources References Regression 1 Introduction and Theoretical Foundations 1.1 Motivation and Basic Concepts 1.2 Evaluation 1.3 Regression Methods 1.3.1 Linear Regression Advantages Disadvantages 1.3.2 Regression Trees Advantages Disadvantages 1.3.3 Regression Tree Ensembles Advantages Disadvantages 1.3.4 Support Vector Regression Advantages Disadvantages 1.3.5 Artificial Neural Networks Advantages Disadvantages 2 Practical Demonstration 2.1 Use Case 2.2 The Data 2.3 Splitting Training and Test Data 2.4 Prediction of Visitors´ Turnover: Model Building 2.4.1 Summary of Results 2.5 Application of the Model Further Readings and Other Sources References Hyperparameter Tuning 1 Introduction and Theoretical Foundations 1.1 Motivations 1.2 Techniques 1.2.1 Manual Search 1.2.2 Grid Search 1.2.3 Random Search 1.2.4 Bayesian Optimization 1.2.5 Genetic Algorithms 1.3 Summary 2 Practical Demonstration 2.1 Data Preprocessing and Visualization 2.2 Modelling 2.2.1 Manual Search 2.2.2 Grid Search 2.2.3 Random Search 2.2.4 Bayesian Optimization 2.2.5 Genetic Algorithms 2.2.6 Conclusion 3 Research Case Further Readings and Other Sources References Model Evaluation 1 Introduction 2 Performance of Classification Models 2.1 Performance at Fixed Operating Conditions 2.1.1 Classification Accuracy 2.1.2 Recall (Sensitivity) 2.1.3 Precision 2.1.4 F1 2.1.5 Specificity 2.2 ROC Curves, P-R Curves 3 Regression 3.1 Evaluation Scores 3.1.1 Mean Square Error (MSE) 3.1.2 Root Mean Square Error (RMSE) 3.1.3 Mean Absolute Error (MAE) 3.1.4 Coefficient of Determination (R2) 4 Overfitting 4.1 Random Sampling 4.2 Cross-Validation 4.3 Leave-One-Out 5 Practical Demonstration 5.1 Confusion Matrix 5.2 ROC Curve 5.3 Lift Curve 5.4 Data Over- or Undersampling 6 Research Case Further Readings and Other Sources References Interpretability of Machine Learning Models 1 Introduction and Theoretical Foundations 1.1 Introduction to Explainability 1.2 Why Are Some Models Uninterpretable? 1.3 For Whom Can Explainability Be Useful or Necessary? 1.4 Why Should One Care About the Interpretability of ML Systems? 1.4.1 Providing Trust 1.4.2 Complying to Regulations 1.4.3 Understanding Predictions 1.4.4 Creating Better Models 1.5 Explainability Frameworks 1.5.1 Model Agnostic Strategy 1.5.2 LIME 1.5.3 ELI5 1.5.4 Anchors 1.5.5 Counterfactuals 1.5.6 SHAP 1.5.7 Deep Learning 1.5.8 Cloud Platforms 1.6 Fairness and Adversarial Attacks 2 Practical Demonstration 2.1 Data Description 2.2 Data Preparation 2.3 Classification Model 2.4 Explicability 2.4.1 SHAP: Global Interpretation 2.4.2 SHAP: Local Interpretation 2.4.3 Lime 2.5 Conclusions 3 Research-Case Further Readings and Other Sources References Part III: Natural Language Processing Natural Language Processing (NLP): An Introduction 1 Introduction and Theoretical Foundations 2 Text Analysis in Tourism 3 NLP Techniques 4 Text Preparation and Pre-processing 4.1 Language Detection 4.2 Tokenisation 4.3 Lowercasing and Removal of Punctuation 4.4 Expand Contractions 4.5 Removal of Stop Words 4.6 Removal of URLs, HTML Tags, and Emotions/Emojis 4.7 Correction of Spelling 4.8 Stemming and Lemmatisation 4.9 Part of Speech Tagging (POS) 4.10 Named Entity Recognition (NER) 4.11 Feature Extraction 4.12 Visual EDA 5 Challenges of Working with Text 6 Practical Demonstration 6.1 Tips for Using Python for an NLP Study Further Readings and Other Sources References Text Representations and Word Embeddings 1 Introduction and Theoretical Foundations 1.1 One Hot Encoding 1.2 Bag-of-Words (CountVectorizer) 1.3 TF-IDF 1.4 Word Embeddings 1.4.1 Word2vec 1.4.2 Doc2Vec 1.4.3 fastText 1.4.4 GloVe 1.4.5 ELMo 1.4.6 BERT 1.5 Visualization of Multidimensional Data 1.6 The Future of Embeddings 1.7 Embeddings in Tourism-Related Research 2 Practical Demonstration 2.1 BOW 2.2 TF-IDF 2.3 Word2vec 2.4 BERT Further Readings and Other Sources References Sentiment Analysis 1 Introduction 2 Theoretical Foundations 3 Practical Demonstration 4 Research Case 1: Lexicon-Based Sentiment Analysis 5 Research Case 2: Machine Learning Sentiment Analysis Further Readings and Other Sources References Topic Modelling 1 Introduction and Theoretical Foundations 2 Topic Modelling Approaches 2.1 Latent Dirichlet Allocation (LDA) 2.1.1 LDA Hyperparameters 2.2 Non-negative Matrix Factorisation (NMF) 2.3 Correlation Explanation (CorEX) 2.4 Top2Vec 2.5 BERTopic 3 Topic Modelling Limitations and Challenges 3.1 Evaluating and Interpreting Topics 4 Topic Modelling in Tourism Studies 5 Topic Model Toolkits and Software Solutions 6 Practical Demonstration 6.1 LDA: Data Preparation and Preprocessing 6.2 Topic Modelling with CorEx Further Readings and Other Sources References Entity Matching: Matching Entities Between Multiple Data Sources 1 Introduction and Theoretical Foundations 1.1 Entity Matching Problem Statement 1.2 Entity Matching Examples in the Travel Industry 1.3 Overview of the Stages of an Entity Matching Approach 2 Practical Demonstration 2.1 Data Formatting and Pre-processing 2.2 Candidate Generation 2.3 Record Pair Comparison (Threshold-based) 2.4 Record Pair Comparison (Neural-based) 3 Summary Further Readings and Other Sources References Knowledge Graphs 1 Introduction and Theoretical Foundations 1.1 Fundamentals 1.2 Modeling the Domain 2 Steps Toward Building a Tourism Knowledge Graph 2.1 Knowledge Graph Construction 2.2 Knowledge Graph Identification 2.3 Storing, Querying, and Using the Knowledge Graph 3 Practical Demonstration and How-To Guidelines 3.1 Hints and Tips 4 Research Case Further Readings and Other Sources References Part IV: Additional Methods Network Analysis 1 Introduction and Theoretical Foundations 1.1 Network Analysis in a Nutshell 2 Practical Demonstration 3 A Worked Example 4 Research-Case Further Readings and Other Sources References Time Series Analysis 1 Introduction and Theoretical Foundations 2 Practical Demonstration 2.1 Research Case 2.2 Forecasting Methods 2.2.1 Seasonal Naïve 2.2.2 Single Exponential Smoothing (SES) 2.2.3 Error Trend Seasonal (ETS) 2.2.4 Forecasting Combination Method 2.3 Measures of Forecasting Accuracy 3 Results Further Readings and Other Sources References Agent-Based Modelling 1 Introduction and Theoretical Foundations 1.1 Tourism as a Complex System 1.2 ABM Benefits 1.3 Background of ABM 1.4 Key ABM Features 1.4.1 Agents 1.4.2 Environment 1.4.3 System-level 1.4.4 Interactions 1.5 Challenges When Applying ABM 1.6 Tourism-related ABM 2 Practical Demonstration 2.1 Defining the Model Purpose 2.2 Conceptual Model Set-up 2.3 Model Description 2.4 Model Components 2.4.1 Agents 2.4.2 Environment 2.4.3 System-Level Variables 2.4.4 Simulated Time 2.4.5 Interactions 2.5 Software 2.6 Analysis 2.6.1 Verification 2.6.2 Validation 2.6.3 Analysing Findings 3 Research Case 3.1 Contribution of Method 3.2 Analysis Further Readings and Other Sources Agent-Based Modelling Overview, Design Concepts, and Details (ODD) + Decision-making (ODD+D) Protocols Software Selection GIS Analysis References Geographic Information System (GIS) 1 Introduction 2 Theoretical Foundations 2.1 Data 2.2 Analysis 2.3 Creating Maps 3 Practical Demonstration Further Readings and Other Sources Books Websites Tourism Applications References Visual Data Analysis 1 Introduction and Theoretical Foundations 1.1 Data Visualization Techniques 1.2 Data Analysis Workflow 1.3 Data Visualization in the Data Analysis Workflow 2 Demonstration 2.1 Datasets 2.2 Data Analysis Workflow 2.2.1 Discover 2.2.2 Wrangle 2.2.3 Profile 2.2.4 Model 2.2.5 Report References Software and Tools 1 RapidMiner (by Wolfram Höpken) 2 Orange (by Ajda Pretnar) 3 KNIME Analytics Platform (by Stefan Helfrich) 4 WEKA (by Tony C Smith) 5 SAS Viya (by Piere Paolo Ippolito) 6 BigML (by BigML) 7 Dataiku (by Laura Wiest) 8 DataRobot (by DataRobot) References Glossary Index