ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applications of Heat, Mass and Fluid Boundary Layers

دانلود کتاب کاربرد لایه های مرزی حرارت، جرم و سیال

Applications of Heat, Mass and Fluid Boundary Layers

مشخصات کتاب

Applications of Heat, Mass and Fluid Boundary Layers

ویرایش: 1 
نویسندگان: , , ,   
سری: Woodhead Publishing Series in Energy 
ISBN (شابک) : 012817949X, 9780128179499 
ناشر: Woodhead Publishing 
سال نشر: 2020 
تعداد صفحات: 522 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Applications of Heat, Mass and Fluid Boundary Layers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کاربرد لایه های مرزی حرارت، جرم و سیال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کاربرد لایه های مرزی حرارت، جرم و سیال



کاربردهای لایه‌های مرزی گرما، جرم و سیال آخرین تحقیقات در مورد لایه‌های مرزی را که در سال‌های اخیر پیشرفت‌های قابل‌توجهی داشته‌اند، گرد هم می‌آورد. این کتاب مفاهیم و راه‌حل‌های مربوط به مسائل انرژی و پایداری محیط‌زیست را با ترکیب نظریه‌های بنیادی بر روی لایه‌های مرزی با کاربردهای صنعتی در دنیای واقعی از جمله صنایع حرارتی، هسته‌ای و شیمیایی برجسته می‌کند. ویراستاران کتاب و تیم متخصص آنها در مورد بسیاری از موضوعات اصلی، از جمله سیالات انتقال حرارت پیشرفته و تجزیه و تحلیل لایه مرزی، فیزیک حرکت سیال و جریان ویسکوز، ترمودینامیک و پدیده‌های انتقال، در کنار روش‌های کلیدی تحلیل مانند Merk-Chao-Fagbenle بحث می‌کنند. روش.

پوشش چند رشته ای این کتاب به مهندسان، دانشمندان، محققان و دانشجویان فارغ التحصیل در زمینه گرما، جرم، جریان سیال و انتقال درک کاملی از تکنیک ها، روش ها و کاربردهای لایه های مرزی، با یکپارچه سازی می دهد. رویکرد به انرژی، تغییرات آب و هوا و آینده ای پایدار.


توضیحاتی درمورد کتاب به خارجی

Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method.

This book's multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future.



فهرست مطالب

Contents
List of contributors
Preface
Acknowledgments
1 Physics of fluid motion
	1.1 Introduction
	1.2 The basic equations of viscous flow
		1.2.1 Law of conservation of mass: the continuity equation
		1.2.2 Derivation of the law of conservation of mass in the rectangular coordinate system
		1.2.3 Derivation of the law of conservation of mass in the cylindrical coordinate system
	1.3 Momentum equation
		1.3.1 Constitutive relations for the equation of motion for Newtonian fluids
		1.3.2 Equations of motion for Newtonian fluids: Navier-Stokes equations
		1.3.3 Constitutive equations for non-Newtonian fluids
		1.3.4 The law of conservation of energy (the first law of thermodynamics)
		1.3.5 The second law of thermodynamics: entropy production
	1.4 Velocity slip and temperature jump
	References
2 Mechanisms of heat transfer and boundary layers
	2.1 Introduction
	2.2 Heat transfer
	2.3 Modes of heat transfer
		2.3.1 Conduction
		2.3.2 Convection
		2.3.3 Radiation
		2.3.4 Thermodynamics of heat transfer
		2.3.5 Heat transfer and entropy production
	2.4 The boundary layer equations
		2.4.1 Dimensional analysis and similarity
		2.4.2 The velocity boundary layer equations
		2.4.3 The thermal boundary layer equation
		2.4.4 The concentration boundary layer equation
		2.4.5 More on convection boundary layer flows
	2.5 Internal boundary layer flows
	2.6 External boundary layer flows
	2.7 Wake and jet boundary layers
	2.8 Hydrodynamic boundary layer stability
		2.8.1 Prediction of transition
		2.8.2 Boundary layer separation
	2.9 Practical applications of boundary layer flow
	2.10 Conclusions
	References
3 On some basics of compressible fluid flows
	Nomenclature
	3.1 Introduction
	3.2 Fundamental assumption
	3.3 Basic equations of compressible fluid flow
		The conservation of mass or continuity equation
		The conservation of momentum or momentum equation (Euler equation)
		The conservation of energy or energy equation (first law of thermodynamics)
			3.3.1 Energy equation for adiabatic and isothermal processes
			3.3.2 Energy equation for an adiabatic process
			3.3.3 Equation of state
	3.4 Entropy factors
	3.5 A note on applications of compressible fluid flow
	References
4 Boundary layer equations in fluid dynamics
	4.1 The continuity equation
	4.2 The momentum equations
	4.3 Coutte flow
	4.4 Plane Poiseuille flow
	4.5 Hagen Poiseuille flow (pipe flow)
	4.6 Flow over porous wall
		4.6.1 Uniform suction on a plane
	4.7 Flow between plates with bottom injection and top suction
	4.8 Flow in a porous duct
	4.9 Approximate analytic solution (perturbation)
	4.10 Numerical solution
	4.11 The boundary-layer equations
		4.11.1 Boundary layer governing equations
	4.12 Influence of boundary layer on external flow
		4.12.1 Momentum thickness θ and momentum integral
		4.12.2 Displacement thickness δ*
	4.13 The flat-plate boundary layer
		4.13.1 Laminar flow
		4.13.2 Turbulent flow
	References
5 The Merk-Chao-Fagbenle method for laminar boundary layer analysis
	5.1 Introduction
	5.2 Historical perspectives of series-based methods and the Merk-Chao-Fagbenle (MCF) procedure
	5.3 Mathematical formulations of the Merk-Chao-Fagbenle method
		5.3.1 Forced convection over circular cylinder in crossflow
		5.3.2 Skin friction, displacement thickness, momentum thickness, and velocity distribution
		5.3.3 Heat transfer results
		5.3.4 Comparison with experimental heat transfer data
		5.3.5 Calculated temperature profiles
		5.3.6 Comparison with experimental mass transfer data
	5.4 Forced convection flow over a sphere
	5.5 Forced convection over sears' airfoils
	5.6 Consideration in forced convection (nonisothermal) boundary layer transfer
	5.7 Consideration in mixed convection boundary layer transfer
	5.8 Consideration for nanofluids and other extensions of the methodology
	5.9 Conclusion
	References
6 The spectral-homotopy analysis method (SHAM) for solutions of boundary layer problems
	6.1 Introduction
	6.2 The spectral-homotopy analysis method (SHAM)
	6.3 Examples
		6.3.1 Example 1: two-dimensional laminar flow between two moving porous walls
			6.3.1.1 SHAM solution
			6.3.1.2 Results
		6.3.2 Example 2: steady von Kármán flow
			6.3.2.1 SHAM solution
			6.3.2.2 Results
	6.4 Pros and Cons of the SHAM
	6.5 Conclusion
	References
7 On a new numerical approach of MHD mixed convection flow with heat and mass transfer of a micropolar fluid over an unsteady stretching sheet in the presence of viscous dissipation and thermal radiation
	Nomenclature
	7.1 Introduction
	7.2 Mathematical formulation
	7.3 Similarity analysis
		7.3.1 Boundary conditions
	7.4 Methods of solution
		7.4.1 Spectral Quasi-Linearization Method (SQLM)
			7.4.1.1 Overview
			7.4.1.2 Some important details
			7.4.1.3 Application
	7.5 Results and discussion
	7.6 Conclusion
	Acknowledgment
	References
8 On the bivariate spectral quasilinearization method for nonlinear boundary layer partial differential equations
	8.1 Introduction
	8.2 Bivariate interpolated spectral quasilinearization method
	8.3 Results and discussion
	8.4 Conclusion
	Acknowledgments
	References
9 Mixed convection heat transfer in rotating elliptic coolant channels
	9.1 Introduction
		9.1.1 Some historical background and literature review
		9.1.2 Objectives of the study
	9.2 Governing equations for horizontal elliptic duct rotating in parallel mode
		9.2.1 Equations for the working fluid
		9.2.2 Normalization parameters
	9.3 Governing equations for vertical elliptic duct rotating in parallel mode
	9.4 Parameter perturbation analysis for horizontal elliptic ducts in parallel mode rotation
		9.4.1 Boundary conditions
		9.4.2 Power series
		9.4.3 Zeroth-order solutions
		9.4.4 First-order solutions
		9.4.5 Second-order solutions
		9.4.6 Solutions of power series approximations
		9.4.7 Peripheral Nusselt number
	9.5 Parameter perturbation analysis for vertical elliptic ducts in parallel mode rotation
		9.5.1 Boundary conditions
		9.5.2 Zeroth-order solutions
		9.5.3 First-order solutions
		9.5.4 Second-order solutions
		9.5.5 Peripheral local Nusselt number
	9.6 Discussion and conclusions of the effects of the variables on fluid flow and heat transfer
	References
10 Numerical techniques for the solution of the laminar boundary layer equations
	10.1 Introduction - laminar boundary layer equations
		10.1.1 Blasius equation
		10.1.2 One-dimensional unsteady heat equation
	10.2 Numerical methods - general background and the most important techniques in the context of the laminar boundary layer ODEs
		10.2.1 General overview - Euler scheme example
		10.2.2 Runge-Kutta and predictor-corrector methods
			10.2.2.1 Runge-Kutta methods
			10.2.2.2 Multistep methods - Adams-Bashforth
	10.3 Application of different numerical methods for the solution of the Blasius equation
		10.3.1 Blasius equation as a numerical boundary value problem
		10.3.2 Practical application of the shooting method for the solution of the Blasius equation
			10.3.2.1 Change of variables and first steps
			10.3.2.2 Secant method for the iteration towards finding the accurate . F |η= 0
			10.3.2.3 Bisection method for the iteration towards finding the accurate . F | η=0
	10.4 Implementation of the shooting method for the solution of the Blasius equation
		10.4.1 Program description
		10.4.2 Results, interpretation, and sensitivity study
	10.5 Application of the finite-element method for one-dimensional unsteady heat equation
	10.6 Practical implementation of the finite-element method for one-dimensional unsteady heat equation
	10.7 Summary and outlook
	References
11 On a selection of convective boundary layer transfer problems
	11.1 Introduction
	11.2 Viscous dissipation and magnetic field effects on convection flow over a vertical plate
	11.3 Free convection mhd flow past a semiinfinite flat plate
	11.4 Convection of non-darcy flow, Dufour and Soret effects past a porous medium
	11.5 Unsteady mhd convective flow with thermophoresis of particles past a vertical surface
	11.6 Thermal conductivity effects on compressible boundary layer flow over a vertical plate
	11.7 Conclusion
	References
12 Advanced fluids - a review of nanofluid transport and its applications
	12.1 Introduction
		12.1.1 Some background and history of nanofluids
	12.2 Current understanding of nanofluids
		12.2.1 Production of nanofluids
		12.2.2 Some effective medium theories of nanofluids
	12.3 Classes of nanofluids
		12.3.1 Simple nanofluids
		12.3.2 Hybrid nanofluids
		12.3.3 Carbon nanotube nanofluids
		12.3.4 Graphene nanofluids
	12.4 Thermophysical properties of nanofluids
		12.4.1 Thermal conductivity (knf)
		12.4.2 Dynamic viscosity (μnf)
		12.4.3 Density (ρnf ), specific heat ( Cp ) nf , and thermal expansion ( β)nf coefficient
		12.4.4 Other factors
	12.5 Convective heat transfer of nanofluids
		12.5.1 Convective heat transfer of nanofluids in porous media
		12.5.2 Convective mass transfer of nanofluids
		12.5.3 Convective heat transfer of nanofluids in magnetic and electric fields
		12.5.4 Nanofluid flow and heat transfer in turbulent flow
		12.5.5 Boundary slip considerations in nanofluids
		12.5.6 The lattice-Boltzmann method for convective nanofluid research
	12.6 Global nanofluid research - developments, policy perspectives, and patents
	12.7 Applications of nanofluids
		12.7.1 Application in conventional and renewable energy
		12.7.2 Applications of nanofluids in automotive systems
		12.7.3 Applications of nanofluids in electronic cooling systems
		12.7.4 Applications of nanofluids in medicine
		12.7.5 Other notable areas of application of nanofluids
	12.8 Research gaps and outlook
	12.9 Conclusion
	References
13 On a selection of the applications of thermodynamics
	13.1 Introduction
	13.2 Internal combustion engines - Otto and Diesel cycles
	13.3 Electrical power generation - ideal basic Rankine cycle
	13.4 Refrigeration systems - ideal vapor compression refrigeration cycle
	13.5 Gas turbine systems - ideal air-standard Brayton cycle
	13.6 Desiccant and subcooling dehumidification
	13.7 Evaporative cooling
	13.8 Entropy generation in boundary layer flow and heat transfer
	13.9 Conclusions
	References
14 Overview of non-Newtonian boundary layer flows and heat transfer
	14.1 Introduction
	14.2 Background
		14.2.1 Time-independent non-Newtonian fluid behavior
			14.2.1.1 Shear-thinning, or pseudo-plastic, fluids
			14.2.1.2 Shear-thickening, or dilatant, fluids
			14.2.1.3 Viscoplastic fluids
		14.2.2 Time-dependent non-Newtonian fluid behavior
			14.2.2.1 Thixotropic and rheopectic fluids
		14.2.3 Non-Newtonian laminar boundary layer flows
			14.2.3.1 Laminar boundary layer flows through pipes
			14.2.3.2 Laminar boundary layer flow over a flat plate
			14.2.3.3 Laminar boundary layer flow over a moving stretched sheet
			14.2.3.4 Laminar boundary layer flow over a porous surface
			14.2.3.5 Instabilities in non-Newtonian laminar boundary layers
		14.2.4 Heat transfer in non-Newtonian laminar boundary layers
			14.2.4.1 Thermodynamic-entropy generation in non-Newtonian boundary layers
		14.2.5 Non-Newtonian nanofluid boundary layer transfer
			14.2.5.1 Extensions of the Merk-Chao-Fagbenle method to non-Newtonian fluids
	14.3 A note on current research status and applications of non-Newtonian fluids
		14.3.1 Biological/biomedical systems: vascular fluid dynamics
		14.3.2 Chemical systems: pharmaceutical products
		14.3.3 Food processing systems: processing of tomato ketchup
		14.3.4 Geosciences: drilling muds
		14.3.5 Transportation systems: transport of crude oil emulsions
	14.4 Future directions
	References
15 Climate change in developing nations of the world
	15.1 Introduction
	15.2 Climate change
		15.2.1 Global warming
		15.2.2 Difference between "climate change" and "global warming"
	15.3 Anthropogenic influences on climate change
		15.3.1 Industrial activity
		15.3.2 Deforestation
	15.4 Greenhouse gases (GHGs)
		15.4.1 Major greenhouse gases
		15.4.2 The greenhouse effect
			15.4.2.1 Global warming potential (GWP)
			15.4.2.2 Atmospheric lifetime
	15.5 Earth's energy budget
	15.6 Some climate change trends
		15.6.1 Modeling of climate change
	15.7 Climate change and the transport sector
		15.7.1 Automobiles
		15.7.2 Marine transport
	15.8 Climate change and the industrial sector
	15.9 Climate change mitigation and adaptation
	15.10 Climate change and conflict
	15.11 Climate change and agriculture
	15.12 The role and integration of renewable energy technologies
	15.13 Climate changes in China
	15.14 Climate changes in Malaysia
	15.15 Climate changes in Nigeria
	15.16 Climate changes in Brazil
	15.17 Climate changes in India
	15.18 Climate changes in South Africa
	15.19 Climate changes in Ecuador
	15.20 Conclusion
	References
A Some mathematical background of fluid mechanics
	Transport theorem
	Conservation of mass (continuity equation)
	Alternative forms of the continuity equation
	Balance of momentum
	Sum of forces
	Surface forces FS
	Further analysis of FS
	Normal viscous stresses and pressure
	Construction of the matrix T
	The Navier-Stokes equations
		References
B Some fundamentals of fluid mechanics
	B.1 Types of fluid flow
		Compressible and incompressible flows
	B.2 Flow visualization
		B.2.1 Pathlines
		B.2.2 Streamlines
		B.2.3 Stream tube
			Properties of a stream tube
		B.2.4 Streakline
	References
Index




نظرات کاربران