دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: R. O. Fagbenle (editor), O. M. Amoo (editor), S. Aliu (editor), A. Falana (editor) سری: Woodhead Publishing Series in Energy ISBN (شابک) : 012817949X, 9780128179499 ناشر: Woodhead Publishing سال نشر: 2020 تعداد صفحات: 522 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Applications of Heat, Mass and Fluid Boundary Layers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربرد لایه های مرزی حرارت، جرم و سیال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کاربردهای لایههای مرزی گرما، جرم و سیال آخرین تحقیقات در مورد لایههای مرزی را که در سالهای اخیر پیشرفتهای قابلتوجهی داشتهاند، گرد هم میآورد. این کتاب مفاهیم و راهحلهای مربوط به مسائل انرژی و پایداری محیطزیست را با ترکیب نظریههای بنیادی بر روی لایههای مرزی با کاربردهای صنعتی در دنیای واقعی از جمله صنایع حرارتی، هستهای و شیمیایی برجسته میکند. ویراستاران کتاب و تیم متخصص آنها در مورد بسیاری از موضوعات اصلی، از جمله سیالات انتقال حرارت پیشرفته و تجزیه و تحلیل لایه مرزی، فیزیک حرکت سیال و جریان ویسکوز، ترمودینامیک و پدیدههای انتقال، در کنار روشهای کلیدی تحلیل مانند Merk-Chao-Fagbenle بحث میکنند. روش.
پوشش چند رشته ای این کتاب به مهندسان، دانشمندان، محققان و دانشجویان فارغ التحصیل در زمینه گرما، جرم، جریان سیال و انتقال درک کاملی از تکنیک ها، روش ها و کاربردهای لایه های مرزی، با یکپارچه سازی می دهد. رویکرد به انرژی، تغییرات آب و هوا و آینده ای پایدار.
Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method.
This book's multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future.
Contents List of contributors Preface Acknowledgments 1 Physics of fluid motion 1.1 Introduction 1.2 The basic equations of viscous flow 1.2.1 Law of conservation of mass: the continuity equation 1.2.2 Derivation of the law of conservation of mass in the rectangular coordinate system 1.2.3 Derivation of the law of conservation of mass in the cylindrical coordinate system 1.3 Momentum equation 1.3.1 Constitutive relations for the equation of motion for Newtonian fluids 1.3.2 Equations of motion for Newtonian fluids: Navier-Stokes equations 1.3.3 Constitutive equations for non-Newtonian fluids 1.3.4 The law of conservation of energy (the first law of thermodynamics) 1.3.5 The second law of thermodynamics: entropy production 1.4 Velocity slip and temperature jump References 2 Mechanisms of heat transfer and boundary layers 2.1 Introduction 2.2 Heat transfer 2.3 Modes of heat transfer 2.3.1 Conduction 2.3.2 Convection 2.3.3 Radiation 2.3.4 Thermodynamics of heat transfer 2.3.5 Heat transfer and entropy production 2.4 The boundary layer equations 2.4.1 Dimensional analysis and similarity 2.4.2 The velocity boundary layer equations 2.4.3 The thermal boundary layer equation 2.4.4 The concentration boundary layer equation 2.4.5 More on convection boundary layer flows 2.5 Internal boundary layer flows 2.6 External boundary layer flows 2.7 Wake and jet boundary layers 2.8 Hydrodynamic boundary layer stability 2.8.1 Prediction of transition 2.8.2 Boundary layer separation 2.9 Practical applications of boundary layer flow 2.10 Conclusions References 3 On some basics of compressible fluid flows Nomenclature 3.1 Introduction 3.2 Fundamental assumption 3.3 Basic equations of compressible fluid flow The conservation of mass or continuity equation The conservation of momentum or momentum equation (Euler equation) The conservation of energy or energy equation (first law of thermodynamics) 3.3.1 Energy equation for adiabatic and isothermal processes 3.3.2 Energy equation for an adiabatic process 3.3.3 Equation of state 3.4 Entropy factors 3.5 A note on applications of compressible fluid flow References 4 Boundary layer equations in fluid dynamics 4.1 The continuity equation 4.2 The momentum equations 4.3 Coutte flow 4.4 Plane Poiseuille flow 4.5 Hagen Poiseuille flow (pipe flow) 4.6 Flow over porous wall 4.6.1 Uniform suction on a plane 4.7 Flow between plates with bottom injection and top suction 4.8 Flow in a porous duct 4.9 Approximate analytic solution (perturbation) 4.10 Numerical solution 4.11 The boundary-layer equations 4.11.1 Boundary layer governing equations 4.12 Influence of boundary layer on external flow 4.12.1 Momentum thickness θ and momentum integral 4.12.2 Displacement thickness δ* 4.13 The flat-plate boundary layer 4.13.1 Laminar flow 4.13.2 Turbulent flow References 5 The Merk-Chao-Fagbenle method for laminar boundary layer analysis 5.1 Introduction 5.2 Historical perspectives of series-based methods and the Merk-Chao-Fagbenle (MCF) procedure 5.3 Mathematical formulations of the Merk-Chao-Fagbenle method 5.3.1 Forced convection over circular cylinder in crossflow 5.3.2 Skin friction, displacement thickness, momentum thickness, and velocity distribution 5.3.3 Heat transfer results 5.3.4 Comparison with experimental heat transfer data 5.3.5 Calculated temperature profiles 5.3.6 Comparison with experimental mass transfer data 5.4 Forced convection flow over a sphere 5.5 Forced convection over sears' airfoils 5.6 Consideration in forced convection (nonisothermal) boundary layer transfer 5.7 Consideration in mixed convection boundary layer transfer 5.8 Consideration for nanofluids and other extensions of the methodology 5.9 Conclusion References 6 The spectral-homotopy analysis method (SHAM) for solutions of boundary layer problems 6.1 Introduction 6.2 The spectral-homotopy analysis method (SHAM) 6.3 Examples 6.3.1 Example 1: two-dimensional laminar flow between two moving porous walls 6.3.1.1 SHAM solution 6.3.1.2 Results 6.3.2 Example 2: steady von Kármán flow 6.3.2.1 SHAM solution 6.3.2.2 Results 6.4 Pros and Cons of the SHAM 6.5 Conclusion References 7 On a new numerical approach of MHD mixed convection flow with heat and mass transfer of a micropolar fluid over an unsteady stretching sheet in the presence of viscous dissipation and thermal radiation Nomenclature 7.1 Introduction 7.2 Mathematical formulation 7.3 Similarity analysis 7.3.1 Boundary conditions 7.4 Methods of solution 7.4.1 Spectral Quasi-Linearization Method (SQLM) 7.4.1.1 Overview 7.4.1.2 Some important details 7.4.1.3 Application 7.5 Results and discussion 7.6 Conclusion Acknowledgment References 8 On the bivariate spectral quasilinearization method for nonlinear boundary layer partial differential equations 8.1 Introduction 8.2 Bivariate interpolated spectral quasilinearization method 8.3 Results and discussion 8.4 Conclusion Acknowledgments References 9 Mixed convection heat transfer in rotating elliptic coolant channels 9.1 Introduction 9.1.1 Some historical background and literature review 9.1.2 Objectives of the study 9.2 Governing equations for horizontal elliptic duct rotating in parallel mode 9.2.1 Equations for the working fluid 9.2.2 Normalization parameters 9.3 Governing equations for vertical elliptic duct rotating in parallel mode 9.4 Parameter perturbation analysis for horizontal elliptic ducts in parallel mode rotation 9.4.1 Boundary conditions 9.4.2 Power series 9.4.3 Zeroth-order solutions 9.4.4 First-order solutions 9.4.5 Second-order solutions 9.4.6 Solutions of power series approximations 9.4.7 Peripheral Nusselt number 9.5 Parameter perturbation analysis for vertical elliptic ducts in parallel mode rotation 9.5.1 Boundary conditions 9.5.2 Zeroth-order solutions 9.5.3 First-order solutions 9.5.4 Second-order solutions 9.5.5 Peripheral local Nusselt number 9.6 Discussion and conclusions of the effects of the variables on fluid flow and heat transfer References 10 Numerical techniques for the solution of the laminar boundary layer equations 10.1 Introduction - laminar boundary layer equations 10.1.1 Blasius equation 10.1.2 One-dimensional unsteady heat equation 10.2 Numerical methods - general background and the most important techniques in the context of the laminar boundary layer ODEs 10.2.1 General overview - Euler scheme example 10.2.2 Runge-Kutta and predictor-corrector methods 10.2.2.1 Runge-Kutta methods 10.2.2.2 Multistep methods - Adams-Bashforth 10.3 Application of different numerical methods for the solution of the Blasius equation 10.3.1 Blasius equation as a numerical boundary value problem 10.3.2 Practical application of the shooting method for the solution of the Blasius equation 10.3.2.1 Change of variables and first steps 10.3.2.2 Secant method for the iteration towards finding the accurate . F |η= 0 10.3.2.3 Bisection method for the iteration towards finding the accurate . F | η=0 10.4 Implementation of the shooting method for the solution of the Blasius equation 10.4.1 Program description 10.4.2 Results, interpretation, and sensitivity study 10.5 Application of the finite-element method for one-dimensional unsteady heat equation 10.6 Practical implementation of the finite-element method for one-dimensional unsteady heat equation 10.7 Summary and outlook References 11 On a selection of convective boundary layer transfer problems 11.1 Introduction 11.2 Viscous dissipation and magnetic field effects on convection flow over a vertical plate 11.3 Free convection mhd flow past a semiinfinite flat plate 11.4 Convection of non-darcy flow, Dufour and Soret effects past a porous medium 11.5 Unsteady mhd convective flow with thermophoresis of particles past a vertical surface 11.6 Thermal conductivity effects on compressible boundary layer flow over a vertical plate 11.7 Conclusion References 12 Advanced fluids - a review of nanofluid transport and its applications 12.1 Introduction 12.1.1 Some background and history of nanofluids 12.2 Current understanding of nanofluids 12.2.1 Production of nanofluids 12.2.2 Some effective medium theories of nanofluids 12.3 Classes of nanofluids 12.3.1 Simple nanofluids 12.3.2 Hybrid nanofluids 12.3.3 Carbon nanotube nanofluids 12.3.4 Graphene nanofluids 12.4 Thermophysical properties of nanofluids 12.4.1 Thermal conductivity (knf) 12.4.2 Dynamic viscosity (μnf) 12.4.3 Density (ρnf ), specific heat ( Cp ) nf , and thermal expansion ( β)nf coefficient 12.4.4 Other factors 12.5 Convective heat transfer of nanofluids 12.5.1 Convective heat transfer of nanofluids in porous media 12.5.2 Convective mass transfer of nanofluids 12.5.3 Convective heat transfer of nanofluids in magnetic and electric fields 12.5.4 Nanofluid flow and heat transfer in turbulent flow 12.5.5 Boundary slip considerations in nanofluids 12.5.6 The lattice-Boltzmann method for convective nanofluid research 12.6 Global nanofluid research - developments, policy perspectives, and patents 12.7 Applications of nanofluids 12.7.1 Application in conventional and renewable energy 12.7.2 Applications of nanofluids in automotive systems 12.7.3 Applications of nanofluids in electronic cooling systems 12.7.4 Applications of nanofluids in medicine 12.7.5 Other notable areas of application of nanofluids 12.8 Research gaps and outlook 12.9 Conclusion References 13 On a selection of the applications of thermodynamics 13.1 Introduction 13.2 Internal combustion engines - Otto and Diesel cycles 13.3 Electrical power generation - ideal basic Rankine cycle 13.4 Refrigeration systems - ideal vapor compression refrigeration cycle 13.5 Gas turbine systems - ideal air-standard Brayton cycle 13.6 Desiccant and subcooling dehumidification 13.7 Evaporative cooling 13.8 Entropy generation in boundary layer flow and heat transfer 13.9 Conclusions References 14 Overview of non-Newtonian boundary layer flows and heat transfer 14.1 Introduction 14.2 Background 14.2.1 Time-independent non-Newtonian fluid behavior 14.2.1.1 Shear-thinning, or pseudo-plastic, fluids 14.2.1.2 Shear-thickening, or dilatant, fluids 14.2.1.3 Viscoplastic fluids 14.2.2 Time-dependent non-Newtonian fluid behavior 14.2.2.1 Thixotropic and rheopectic fluids 14.2.3 Non-Newtonian laminar boundary layer flows 14.2.3.1 Laminar boundary layer flows through pipes 14.2.3.2 Laminar boundary layer flow over a flat plate 14.2.3.3 Laminar boundary layer flow over a moving stretched sheet 14.2.3.4 Laminar boundary layer flow over a porous surface 14.2.3.5 Instabilities in non-Newtonian laminar boundary layers 14.2.4 Heat transfer in non-Newtonian laminar boundary layers 14.2.4.1 Thermodynamic-entropy generation in non-Newtonian boundary layers 14.2.5 Non-Newtonian nanofluid boundary layer transfer 14.2.5.1 Extensions of the Merk-Chao-Fagbenle method to non-Newtonian fluids 14.3 A note on current research status and applications of non-Newtonian fluids 14.3.1 Biological/biomedical systems: vascular fluid dynamics 14.3.2 Chemical systems: pharmaceutical products 14.3.3 Food processing systems: processing of tomato ketchup 14.3.4 Geosciences: drilling muds 14.3.5 Transportation systems: transport of crude oil emulsions 14.4 Future directions References 15 Climate change in developing nations of the world 15.1 Introduction 15.2 Climate change 15.2.1 Global warming 15.2.2 Difference between "climate change" and "global warming" 15.3 Anthropogenic influences on climate change 15.3.1 Industrial activity 15.3.2 Deforestation 15.4 Greenhouse gases (GHGs) 15.4.1 Major greenhouse gases 15.4.2 The greenhouse effect 15.4.2.1 Global warming potential (GWP) 15.4.2.2 Atmospheric lifetime 15.5 Earth's energy budget 15.6 Some climate change trends 15.6.1 Modeling of climate change 15.7 Climate change and the transport sector 15.7.1 Automobiles 15.7.2 Marine transport 15.8 Climate change and the industrial sector 15.9 Climate change mitigation and adaptation 15.10 Climate change and conflict 15.11 Climate change and agriculture 15.12 The role and integration of renewable energy technologies 15.13 Climate changes in China 15.14 Climate changes in Malaysia 15.15 Climate changes in Nigeria 15.16 Climate changes in Brazil 15.17 Climate changes in India 15.18 Climate changes in South Africa 15.19 Climate changes in Ecuador 15.20 Conclusion References A Some mathematical background of fluid mechanics Transport theorem Conservation of mass (continuity equation) Alternative forms of the continuity equation Balance of momentum Sum of forces Surface forces FS Further analysis of FS Normal viscous stresses and pressure Construction of the matrix T The Navier-Stokes equations References B Some fundamentals of fluid mechanics B.1 Types of fluid flow Compressible and incompressible flows B.2 Flow visualization B.2.1 Pathlines B.2.2 Streamlines B.2.3 Stream tube Properties of a stream tube B.2.4 Streakline References Index