دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Martin Ochmann. Rafael Piscoya
سری:
ISBN (شابک) : 9813360399, 9789813360396
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 247
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Application of Acoustic Sources Using Complex Analysis: Complex Acoustic Sources, Green’s Functions and Half-Space Problems, Acoustic Radiation and Scattering Using Equivalent Source and Boundary Element Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استفاده از منابع صوتی با استفاده از تجزیه و تحلیل پیچیده: منابع صوتی پیچیده ، توابع گرین و مسائل مربوط به فضای نیمه ، تابش صوتی و پراکندگی با استفاده از روش معادل منبع و عناصر مرزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgements Contents Symbols (for Chaps. 2–6) 1 Introduction 1.1 Motivation 1.2 Rough Overview and Structure of the Book 1.3 Historical and Scientific Development of Complex Sources and Their Application 2 Complex Monopoles and the Helmholtz Equation in Cartesian Coordinates 3 Complex Monopoles in Oblate Spheroidal Coordinates 4 The Driving Source of the Complex Monopole 4.1 The Driving Source of the Complex Monopole in One Dimension (1D) 4.2 The Sommerfeld Integral for Real and Complex Source Locations 4.3 The Driving Source of the Complex Monopole in Two Dimensions (2D) 4.4 The Driving Source of the Complex Monopole in Three Dimensions (3D) 5 Application of Complex Sources for Half-Space Green’s Functions Above an Impedance Plane 5.1 General Impedance Formula 5.2 One-Dimensional Green’s Function on a Half-Line with Impedance Boundary Condition and Its Driving Sources 5.2.1 Half-Line Green’s Function 5.2.2 Driving Sources of the Half-Line Green’s Function 5.3 Two-Dimensional Green’s Function on a Half-Plane with Impedance Boundary Condition and Its Driving Sources 5.3.1 Half-Plane Green’s Function 5.3.2 Driving Sources of the Half-Plane Green’s Function 5.4 Three-Dimensional Green’s Function on a Half-Space with Impedance Boundary Condition and Its Driving Sources 5.4.1 Half-Space Green’s Function 5.4.2 Driving Sources of the Half-Space Green’s Function 5.5 Overview About the Sources and a Generalized Formula for 1D, 2D, and 3D 6 New and Old Formulas from the Helmholtz Equation with Half-Space Driving Sources 6.1 Solutions Obtained by Using the Helmholtz Huygens Integral 6.2 Solutions by Fourier Transform in z Followed by Fourier or Hankel Transform 6.2.1 2D Case: Solution by Fourier Transform in z Followed by Fourier Transform in x 6.2.2 3D Case: Solution by Fourier Transform in z Followed by Hankel Transform in (x, y) 6.3 Solutions Represented as an Integral Over Horizontal Plane Waves 6.3.1 Solutions Represented as an Integral Over Horizontal Plane Waves in 2D 6.3.2 Solutions Represented as an Integral Over Horizontal Plane Waves in 3D 7 Branch Cuts of the Square Root with Complex Argument 7.1 Complex Source Position 7.1.1 “Source” Branch 7.1.2 “Beam” Branch Cut 7.1.3 “Open Duct” Branch 7.2 Sommerfeld Branches 7.2.1 Branches of the Square Root µ= sqrtλ2 - k2 with Real k 7.2.2 Branches of the Square Root µ= sqrtλ2 - k2 with Complex k 8 Realization of Complex Sources 8.1 Sound Focusing—Beamwidth 8.2 Integral Representation of a Monopole 8.3 Integral Representation of a Complex Monopole 8.4 Physical Realization of a Complex Monopole 8.4.1 The 2D-Case 8.4.2 The 3D-Case 8.5 Complex Multipoles 8.6 Physical Realization of Complex Multipoles 9 Simulation of Vibrating and Scattering Objects with ESM/CESM 9.1 Conventional Equivalent Source Method (ESM) 9.1.1 Sound Radiation of a Rectangular Radiator 9.1.2 Sound Scattering of a Non-convex Cat’s Eye 9.2 Complex Equivalent Source Method (CESM) 9.2.1 Sound Radiation of a Spherical Cap 9.2.2 Sound Scattering of a Cat's Eye 9.2.3 Sound Radiation of a Non-convex Cat's Eye 9.2.4 Sound Radiation of a Vibrating Cone Embedded in a Baffle 10 Green’s Function Above Homogeneous Ground 10.1 Two-Dimensional Problem 10.1.1 Impulsive Time Dependence 10.1.2 Sound Field of a Line Source with Arbitrary Time Dependence 10.2 Three-Dimensional Problem 10.2.1 Sommerfeld Approach 10.2.2 Exact Image Theory (EIT) 10.2.3 Comparison Between the Sommerfeld Approach and the EIT 11 Boundary Element Techniques for Sound Propagation Above Impedance Planes 11.1 Basic Concepts of the BEM for Half-Space Problems 11.1.1 Direct Formulation 11.1.2 Indirect Formulation 11.2 Discretization 11.3 Non-uniqueness at Certain Frequencies 11.4 Green’s Function of Rigid (Zp → ∞) and Soft (Zp = 0) Infinite Plane 11.5 The General Impedance Boundary Condition at the Infinite Plane 11.5.1 Classical Formula with Cylindrical Waves (Sommerfeld) 11.5.2 Formula with Reflected Plane Waves (Thomasson) 11.5.3 Formula with Complex Image Sources 11.5.4 Approximated Formula 11.5.5 Comparison of the Performance of the Half-Space Formulas in a BEM Formulation 11.6 Example of Application: Acoustic Thin Barrier Above Impedance Ground 11.6.1 Numerical Model 11.6.2 IL for Rigid and Soft Ground 11.6.3 IL for Grounds with General Type of Impedance 12 Final Remarks and Outlook Appendix A Different Expressions for the Driving Source of a Complex 3D Monopole Appendix B Proof of the Expression for the Driving Sources of the Half-Plane Problem Appendix C Proof of the Expression for the Driving Sources of the Half-Space Problem Appendix D Exact Image Theory Reflection Coefficient Source Density r(q) Transmission Coefficient w Derivative of F(α,B,q) Derivative of tildeF(α,B,q) Appendix E Formula of Thomasson Derivatives of Rs Derivatives of δ Derivatives of W Derivatives of IW Derivatives of R0 Appendix F Weyl–Van der Pol Approximation Derivatives of Rg Derivatives of Complex Distance ε Derivatives of F(ε) References Index