ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Antenna Theory: Analysis and Design

دانلود کتاب نظریه آنتن: تجزیه و تحلیل و طراحی

Antenna Theory: Analysis and Design

مشخصات کتاب

Antenna Theory: Analysis and Design

ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 0471592684, 9780471592686 
ناشر: Wiley 
سال نشر: 2005 
تعداد صفحات: 1073 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 مگابایت 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Antenna Theory: Analysis and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه آنتن: تجزیه و تحلیل و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه آنتن: تجزیه و تحلیل و طراحی

آخرین منبع برای مطالعه تئوری آنتن! در رشته ای که تغییرات تکنولوژیکی گسترده ای را تجربه کرده است، این متن جدیدترین نگاه را به تمام موضوعات ضروری ارائه می دهد. نکات برجسته عبارتند از:
* پوشش جدید آنتن های میکرواستریپ اطلاعات ضروری برای طیف گسترده ای از طرح های عملی وصله های مستطیلی و دایره ای، از جمله برنامه های کامپیوتری را فراهم می کند.
* کاربردهای روش تبدیل فوریه (طیفی) در تابش آنتن.
> * مطالب به روز شده در مورد روش های لحظه ای، مقطع رادار، امپدانس های متقابل، دیافراگم و آنتن های شیپوری، طرح های برد فشرده، و اندازه گیری آنتن.
تاکیدی جدید بر طراحی! Balanis دارای افزایش فوق العاده ای در روش ها و معادلات طراحی است. این یک راه حل محکم برای چالش مواجهه با موقعیت های زندگی واقعی است که مهندسان با آن مواجه هستند. برنامه های رایانه ای موجود در کتاب و نرم افزار همراه آن برای کمک به مهندسان در تجزیه و تحلیل، طراحی و تجسم ویژگی های تشعشع آنتن ها ایجاد شده اند.


توضیحاتی درمورد کتاب به خارجی

The Latest Resource for the Study of Antenna Theory! In a discipline that has experienced vast technological changes, this text offers the most recent look at all the necessary topics. Highlights include:
* New coverage of microstrip antennas provides information essential to a wide variety of practical designs of rectangular and circular patches, including computer programs.
* Applications of Fourier transform (spectral) method to antenna radiation.
* Updated material on moment methods, radar cross section, mutual impedances, aperture and horn antennas, compact range designs, and antenna measurements.
A New Emphasis on Design! Balanis features a tremendous increase in design procedures and equations. This presents a solid solution to the challenge of meeting real-life situations faced by engineers. Computer programs contained in the book-and accompanying software-have been developed to help engineers analyze, design, and visualize the radiation characteristics of antennas.



فهرست مطالب

Front-cover
Front-matter
Preface
Contents
1. Antennas
	1.1 Introduction
	1.2 Types of Antennas
		1.2.1 Wire Antennas
		1.2.2 Aperture Antennas
		1.2.3 Microstrip Antennas
		1.2.4 Array Antennas
		1.2.5 Reflector Antennas
		1.2.6 Lens Antennas
	1.3 Radiation Mechanism
		1.3.1 Single Wire
		1.3.2 Two-Wires
		1.3.3 Dipole
		1.3.4 Computer Animation-Visualization of Radiation Problems
	1.4 Current Distribution on a Thin Wire Antenna
	1.5 Historical Advancement
		1.5.1 Antenna Elements
		1.5.2 Methods of Analysis
		1.5.3 Some Future Challenges
	1.6 Multimedia
	References
2. Fundamental Parameters of Antennas
	2.1 Introduction
	2.2 Radiation Pattern
		2.2.1 Radiation Pattern Lobes
		2.2.2 Isotropic, Directional, and Omnidirectional Patterns
		2.2.3 Principal Patterns
		2.2.4 Field Regions
		2.2.5 Radian and Steradian
	2.3 Radiation Power Density
	2.4 Radiation Intensity
	2.5 Beamwidth
	2.6 Directivity
		2.6.1 Directional Patterns
		2.6.2 Omnidirectional Patterns
	2.7 Numerical Techniques
	2.8 Antenna Efficiency
	2.9 Gain
	2.10 Beam Efficiency
	2.11 Bandwidth
	2.12 Polarization
		2.12.1 Linear, Circular, and Elliptical Polarizations
		2.12.2 Polarization Loss Factor and Efficiency
	2.13 Input Impedance
	2.14 Antenna Radiation Efficiency
	2.15 Antenna Vector Effective Length and Equivalent Areas
		2.15.1 Vector Effective Length
		2.15.2 Antenna Equivalent Areas
	2.16 Maximum Directivity and Maximum Effective Area
	2.17 Friis Transmission Equation and Radar Range Equation
		2.17.1 Friis Transmission Equation
		2.17.2 Radar Range Equation
		2.17.3 Antenna Radar Cross Section
	2.18 Antenna Temperature
	2.19 Multimedia
	References
	Problems
3. Radiation Integrals and Auxiliary Potential Functions
	3.1 Introduction
	3.2 The Vector Potential A for an Electric Current Source J
	3.3 The Vector Potential F for a Magnetic Current Source M
	3.4 Electric and Magnetic Fields for Electric (J) and Magnetic (M) Current Sources
	3.5 Solution of the Inhomogeneous Vector Potential Wave Equation
	3.6 Far-Field Radiation
	3.7 Duality Theorem
	3.8 Reciprocity and Reaction Theorems
		3.8.1 Reciprocity for Two Antennas
		3.8.2 Reciprocity for Antenna Radiation Patterns
	References
	Problems
4. Linear Wire Antennas
	4.1 Introduction
	4.2 Infinitesimal Dipole
		4.2.1 Radiated Fields
		4.2.2 Power Density and Radiation Resistance
		4.2.3 Radian Distance and Radian Sphere
		4.2.4 Near-Field (kr << 1) Region
		4.2.5 Intermediate-Field (kr > 1) Region
		4.2.6 Far-Field (kr >> 1) Region
		4.2.7 Directivity
	4.3 Small Dipole
	4.4 Region Separation
		4.4.1 Far-Field (Fraunhofer) Region
		4.4.2 Radiating Near-Field (Fresnel) Region
		4.4.3 Reactive Near-Field Region
	4.5 Finite Length Dipole
		4.5.1 Current Distribution
		4.5.2 Radiated Fields: Element Factor, Space Factor, and Pattern Multiplication
		4.5.3 Power Density, Radiation Intensity, and Radiation Resistance
		4.5.4 Directivity
		4.5.5 Input Resistance
		4.5.6 Finite Feed Gap
	4.6 Half-Wavelength Dipole
	4.7 Linear Elements near or on Infinite Perfect Conductors
		4.7.1 Image Theory
		4.7.2 Vertical Electric Dipole
		4.7.3 Approximate Formulas for Rapid Calculations and Design
		4.7.4 Antennas for Mobile Communication Systems
		4.7.5 Horizontal Electric Dipole
	4.8 Ground Effects
		4.8.1 Vertical Electric Dipole
		4.8.2 Horizontal Electric Dipole
		4.8.3 Earth Curvature
	4.9 Computer Codes
	4.10 Multimedia
	References
	Problems
5. Loop Antennas
	5.1 Introduction
	5.2 Small Circular Loop
		5.2.1 Radiated Fields
		5.2.2 Small Loop and Infinitesimal Magnetic Dipole
		5.2.3 Power Density and Radiation Resistance
		5.2.4 Near-Field (kr << 1) Region
		5.2.5 Far-Field (kr >> 1) Region
		5.2.6 Radiation Intensity and Directivity
		5.2.7 Equivalent Circuit
	5.3 Circular Loop of Constant Current
		5.3.1 Radiated Fields
		5.3.2 Power Density, Radiation Intensity, Radiation Resistance, and Directivity
	5.4 Circular Loop with Nonuniform Current
		5.4.1 Arrays
		5.4.2 Design Procedure
	5.5 Ground and Earth Curvature Effects for Circular Loops
	5.6 Polygonal Loop Antennas
		5.6.1 Square Loop
		5.6.2 Triangular, Rectangular, and Rhombic Loops
	5.7 Ferrite Loop
		5.7.1 Radiation Resistance
		5.7.2 Ferrite-Loaded Receiving Loop
	5.8 Mobile Communication Systems Applications
	5.9 Multimedia
	References
	Problems
6. Arrays: Linear, Planar, and Circular
	6.1 Introduction
	6.2 Two-Element Array
	6.3 N-Element Linear Array: Uniform Amplitude and Spacing
		6.3.1 Broadside Array
		6.3.2 Ordinary End-Fire Array
		6.3.3 Phased (Scanning) Array
		6.3.4 Hansen-Woodyard End-Fire Array
	6.4 N-Element Linear Array: Directivity
		6.4.1 Broadside Array
		6.4.2 Ordinary End-Fire Array
		6.4.3 Hansen-Woodyard End-Fire Array
	6.5 Design Procedure
	6.6 N-Element Linear Array: Three-Dimensional Characteristics
		6.6.1 N-Elements along Z-Axis
		6.6.2 N-Elements along X- or Y-Axis
	6.7 Rectangular-to-Polar Graphical Solution
	6.8 N-Element Linear Array: Uniform Spacing, Nonuniform Amplitude
		6.8.1 Array Factor
		6.8.2 Binomial Array
		6.8.3 Dolph-Tschebyscheff Array
	6.9 Superdirectivity	file://67827_06b.pdf#page=12		6.9.1 Efficiency and Directivity	file://67827_06b.pdf#page=13		6.9.2 Designs with Constraints	file://67827_06b.pdf#page=13	6.10 Planar Array	file://67827_06b.pdf#page=16		6.10.1 Array Factor	file://67827_06b.pdf#page=16		6.10.2 Beamwidth	file://67827_06b.pdf#page=23		6.10.3 Directivity	file://67827_06b.pdf#page=27	6.11 Design Considerations	file://67827_06b.pdf#page=29	6.12 Circular Array	file://67827_06b.pdf#page=32		6.12.1 Array Factor	file://67827_06b.pdf#page=32	6.13 Multimedia	file://67827_06b.pdf#page=36	References	file://67827_06b.pdf#page=37	Problems	file://67827_06b.pdf#page=387. Antenna Synthesis and Continuous Sources
	7.1 Introduction
	7.2 Continuous Sources
		7.2.1 Line-Source
		7.2.2 Discretization of Continuous Sources
	7.3 Schelkunoff Polynomial Method
	7.4 Fourier Transform Method
		7.4.1 Line-Source
		7.4.2 Linear Array
	7.5 Woodward-Lawson Method
		7.5.1 Line-Source
		7.5.2 Linear Array
	7.6 Taylor Line-Source (Tschebyscheff-Error)
		7.6.1 Design Procedure
	7.7 Taylor Line-Source (One-Parameter)
	7.8 Triangular, Cosine, and Cosine-Squared Amplitude Distributions
	7.9 Line-Source Phase Distributions
	7.10 Continuous Aperture Sources
		7.10.1 Rectangular Aperture
		7.10.2 Circular Aperture
	7.11 Multimedia
	References
	Problems
8. Integral Equations, Moment Method, and Self and Mutual Impedances
	8.1 Introduction
	8.2 Integral Equation Method
		8.2.1 Electrostatic Charge Distribution
		8.2.2 Integral Equation
	8.3 Finite Diameter Wires
		8.3.1 Pocklington's Integral Equation
		8.3.2 Hallén's Integral Equation
		8.3.3 Source Modeling
	8.4 Moment Method Solution
		8.4.1 Basis Functions
		8.4.2 Weighting (Testing) Functions
	8.5 Self-Impedance
		8.5.1 Integral Equation-Moment Method
		8.5.2 Induced EMF Method
	8.6 Mutual Impedance between Linear Elements
		8.6.1 Integral Equation-Moment Method
		8.6.2 Induced EMF Method
	8.7 Mutual Coupling in Arrays
		8.7.1 Coupling in the Transmitting Mode
		8.7.2 Coupling in the Receiving Mode
		8.7.3 Mutual Coupling on Array Performance
		8.7.4 Coupling in an Infinite Regular Array
		8.7.5 Grating Lobes Considerations
	8.8 Multimedia
	References
	Problems
9. Broadband Dipoles and Matching Techniques
	9.1 Introduction
	9.2 Biconical Antenna
		9.2.1 Radiated Fields
		9.2.2 Input Impedance
	9.3 Triangular Sheet, Bow-Tie, and Wire Simulation
	9.4 Cylindrical Dipole
		9.4.1 Bandwidth
		9.4.2 Input Impedance
		9.4.3 Resonance and Ground Plane Simulation
		9.4.4 Radiation Patterns
		9.4.5 Equivalent Radii
		9.4.6 Dielectric Coating
	9.5 Folded Dipole
	9.6 Discone and Conical Skirt Monopole
	9.7 Matching Techniques
		9.7.1 Stub-Matching
		9.7.2 Quarter-Wavelength Transformer
		9.7.3 T-Match
		9.7.4 Gamma Match
		9.7.5 Omega Match
		9.7.6 Baluns and Transformers
	9.8 Multimedia
	References
	Problems
10. Traveling Wave and Broadband Antennas
	10.1 Introduction
	10.2 Traveling Wave Antennas
		10.2.1 Long Wire
		10.2.2 V Antenna
		10.2.3 Rhombic Antenna
	10.3 Broadband Antennas
		10.3.1 Helical Antenna
		10.3.2 Electric-Magnetic Dipole
		10.3.3 Yagi-Uda Array of Linear Elements
		10.3.4 Yagi-Uda Array of Loops
	10.4 Multimedia
	References
	Problems
11. Frequency Independent Antennas, Antenna Miniaturization, and Fractal Antennas
	11.1 Introduction
	11.2 Theory
	11.3 Equiangular Spiral Antennas
		11.3.1 Planar Spiral
		11.3.2 Conical Spiral
	11.4 Log-Periodic Antennas
		11.4.1 Planar and Wire Surfaces
		11.4.2 Dipole Array
		11.4.3 Design of Dipole Array
	11.5 Fundamental Limits of Electrically Small Antennas
	11.6 Fractal Antennas
	11.7 Multimedia
	References
	Problems
12. Aperture Antennas
	12.1 Introduction
	12.2 Field Equivalence Principle: Huygens' Principle
	12.3 Radiation Equations
	12.4 Directivity
	12.5 Rectangular Apertures
		12.5.1 Uniform Distribution on an Infinite Ground Plane
		12.5.2 Uniform Distribution in Space
		12.5.3 TE_10 -Mode Distribution on an Infinite Ground Plane
		12.5.4 Beam Efficiency
	12.6 Circular Apertures
		12.6.1 Uniform Distribution on an Infinite Ground Plane
		12.6.2 TE_11 -Mode Distribution on an Infinite Ground Plane
		12.6.3 Beam Efficiency
	12.7 Design Considerations
		12.7.1 Rectangular Aperture
		12.7.2 Circular Aperture
	12.8 Babinet's Principle
	12.9 Fourier Transforms in Aperture Antenna Theory
		12.9.1 Fourier Transforms-Spectral Domain
		12.9.2 Radiated Fields
		12.9.3 Asymptotic Evaluation of Radiated Field
		12.9.4 Dielectric-Covered Apertures
		12.9.5 Aperture Admittance
	12.10 Ground Plane Edge Effects: The Geometrical Theory of Diffraction
	12.11 Multimedia
	References
	Problems
13. Horn Antennas
	13.1 Introduction
	13.2 E-Plane Sectoral Horn
		13.2.1 Aperture Fields
		13.2.2 Radiated Fields
		13.2.3 Directivity
	13.3 H-Plane Sectoral Horn
		13.3.1 Aperture Fields
		13.3.2 Radiated Fields
		13.3.3 Directivity
	13.4 Pyramidal Horn
		13.4.1 Aperture Fields, Equivalent, and Radiated Fields
		13.4.2 Directivity
		13.4.3 Design Procedure
	13.5 Conical Horn
	13.6 Corrugated Horn
	13.7 Aperture-Matched Horns
	13.8 Multimode Horns
	13.9 Dielectric-Loaded Horns
	13.10 Phase Center
	13.11 Multimedia
	References
	Problems
14. Microstrip Antennas
	14.1 Introduction
		14.1.1 Basic Characteristics
		14.1.2 Feeding Methods
		14.1.3 Methods of Analysis
	14.2 Rectangular Patch
		14.2.1 Transmission-Line Model
		14.2.2 Cavity Model
		14.2.3 Directivity
	14.3 Circular Patch
		14.3.1 Electric and Magnetic Fields - TM^z_mnp
		14.3.2 Resonant Frequencies
		14.3.3 Design
		14.3.4 Equivalent Current Densities and Fields Radiated
		14.3.5 Conductance and Directivity
		14.3.6 Resonant Input Resistance
	14.4 Quality Factor, Bandwidth, and Efficiency
	14.5 Input Impedance
	14.6 Coupling
	14.7 Circular Polarization
	14.8 Arrays and Feed Networks
	14.9 Multimedia
	References
	Problems
15. Reflector Antennas
	15.1 Introduction
	15.2 Plane Reflector
	15.3 Corner Reflector
		15.3.1 90° Corner Reflector
		15.3.2 Other Corner Reflectors
	15.4 Parabolic Reflector
		15.4.1 Front-Fed Parabolic Reflector
		15.4.2 Cassegrain Reflectors
	15.5 Spherical Reflector
	15.6 Multimedia
	References
	Problems
16. Smart Antennas
	16.1 Introduction
	16.2 Smart-Antenna Analogy
	16.3 Cellular Radio Systems Evolution
		16.3.1 Omnidirectional Systems
		16.3.2 Smart-Antenna Systems
	16.4 Signal Propagation
	16.5 Smart Antennas' Benefits
	16.6 Smart Antennas' Drawbacks
	16.7 Antenna
		16.7.1 Array Design
		16.7.2 Linear Array
		16.7.3 Planar Array
	16.8 Antenna Beamforming
		16.8.1 Overview of Direction-of-Arrival (DOA) Algorithms
		16.8.2 Adaptive Beamforming
		16.8.3 Mutual Coupling
		16.8.4 Optimal Beamforming Techniques
	16.9 Mobile Ad hoc Networks (MANETs)
		16.9.1 Overview of Mobile Ad hoc NETworks (MANETs)
		16.9.2 MANETs Employing Smart-Antenna Systems
	16.10 Smart-Antenna System Design, Simulation, and Results
		16.10.1 Design Process
		16.10.2 Single Element-Microstrip Patch Design
		16.10.3 Rectangular Patch
		16.10.4 Array Design
		16.10.5 4 × 4 Planar Array versus 8 × 8 Planar Array
		16.10.6 Adaptive Beamforming
	16.11 Beamforming, Diversity Combining, Rayleigh-Fading, and Trellis-Coded Modulation
	16.12 Other Geometries
	16.13 Multimedia
	References
	Problems
17. Antenna Measurements
	17.1 Introduction
	17.2 Antenna Ranges
		17.2.1 Reflection Ranges
		17.2.2 Free-Space Ranges
		17.2.3 Compact Ranges
		17.2.4 Near-Field/Far-Field Methods
	17.3 Radiation Patterns
		17.3.1 Instrumentation
		17.3.2 Amplitude Pattern
		17.3.3 Phase Measurements
	17.4 Gain Measurements
		17.4.1 Absolute-Gain Measurements
		17.4.2 Gain-Transfer (Gain-Comparison) Measurements
	17.5 Directivity Measurements
	17.6 Radiation Efficiency
	17.7 Impedance Measurements
	17.8 Current Measurements
	17.9 Polarization Measurements
	17.10 Scale Model Measurements
	References
Appendices
	Appendix I
		Appendix II	file://67827_apdxb.pdf#page=1	Appendix III	file://67827_apdxc.pdf#page=1	Appendix IV	file://67827_apdxd.pdf#page=1	Appendix V	file://67827_apdxe.pdf#page=1	Appendix VI	file://67827_apdxf.pdf#page=1		VI.1 Trigonometric	file://67827_apdxf.pdf#page=1		VI.2 Hyperbolic	file://67827_apdxf.pdf#page=2		VI.3 Logarithmic	file://67827_apdxf.pdf#page=3	Appendix VII	file://67827_apdxg.pdf#page=1		VII.1 Vector Transformations	file://67827_apdxg.pdf#page=1			VII.1.1 Rectangular to Cylindrical (and Vice Versa)	file://67827_apdxg.pdf#page=1			VII.1.2 Cylindrical to Spherical (and Vice Versa)	file://67827_apdxg.pdf#page=4			VII.1.3 Rectangular to Spherical (and Vice Versa)	file://67827_apdxg.pdf#page=5		VII.2 Vector Differential Operators	file://67827_apdxg.pdf#page=6			VII.2.1 Rectangular Coordinates	file://67827_apdxg.pdf#page=6			VII.2.2 Cylindrical Coordinates	file://67827_apdxg.pdf#page=6			VII.2.3 Spherical Coordinates	file://67827_apdxg.pdf#page=7		VII.3 Vector Identities	file://67827_apdxg.pdf#page=8			VII.3.1 Addition and Multiplication	file://67827_apdxg.pdf#page=8			VII.3.2 Differentiation	file://67827_apdxg.pdf#page=8			VII.3.3 Integration	file://67827_apdxg.pdf#page=9	Appendix VIII	file://67827_apdxh.pdf#page=1	Appendix IX	file://67827_apdxi.pdf#page=1		IX.1 Television	file://67827_apdxi.pdf#page=1			IX.1.1 Very High Frequency (VHF) Channels	file://67827_apdxi.pdf#page=1			IX.1.2 Ultra High Frequency (UHF) Channels	file://67827_apdxi.pdf#page=1		IX.2 Radio	file://67827_apdxi.pdf#page=2			IX.2.1 Amplitude Modulation (AM) Radio	file://67827_apdxi.pdf#page=2			IX.2.2 Frequency Modulation (FM) Radio	file://67827_apdxi.pdf#page=2		IX.3 Amateur Bands	file://67827_apdxi.pdf#page=2		IX.4 Cellular Telephone	file://67827_apdxi.pdf#page=2			IX.4.1 Land Mobile Systems	file://67827_apdxi.pdf#page=2			IX.4.2 Cordless Telephone	file://67827_apdxi.pdf#page=3		IX.5 Radar IEEE Band Designations	file://67827_apdxi.pdf#page=3Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




نظرات کاربران