ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Analytical heat transfer

دانلود کتاب انتقال حرارت تحلیلی

Analytical heat transfer

مشخصات کتاب

Analytical heat transfer

ویرایش: [Second ed.] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 9780367758974, 0367759004 
ناشر:  
سال نشر: 2022 
تعداد صفحات: [597] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 26 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Analytical heat transfer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب انتقال حرارت تحلیلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب انتقال حرارت تحلیلی

این کتاب نحوه تجزیه و تحلیل و حل مشکلات انتقال حرارت، همرفت، و تابش را توضیح می دهد. این شکاف بین دوره های کارشناسی انتقال حرارت پایه و دوره های فارغ التحصیل انتقال حرارت پیشرفته برای یک ترم انتقال حرارت متوسط ​​را پر می کند. انتقال حرارت رسانش/همرفت پیشرفته؛ یا انتقال حرارت تشعشع


توضیحاتی درمورد کتاب به خارجی

This book explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It fills the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for one semester of intermediate heat transfer; advanced conduction/convection heat transfer; or radiation heat transfer.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface to the Second Edition
Preface to the First Edition
Authors
Chapter 1 Heat Conduction Equations
	1.1 Introduction: Conduction, Convection, and Radiation
		1.1.1 Conduction
			1.1.1.1 Fourier’s Conduction Law
		1.1.2 Convection
			1.1.2.1 Newton’s Cooling Law
		1.1.3 Radiation
			1.1.3.1 Stefan–Boltzmann Law
		1.1.4 Combined Modes of Heat Transfer
	1.2 General Heat Conduction Equations
		1.2.1 Derivations of General Heat Conduction Equations
	1.3 Boundary and Initial Conditions
		1.3.1 Boundary Conditions
		1.3.2 Initial Conditions
	1.4 Simplified Heat Conduction Equations
	Remarks
	Problems
	Reference
Chapter 2 1-D Steady-State Heat Conduction
	2.1 Conduction through Plane Walls
		2.1.1 Conduction through Circular Tube Walls
		2.1.2 Critical Radius of Insulation
	2.2 Conduction with Heat Generation
	2.3 Conduction through Fins with Uniform Cross-Sectional Area
		2.3.1 Fin Performance
			2.3.1.1 Fin Effectiveness
			2.3.1.2 Fin Efficiency
		2.3.2 Radiation Effect
	2.4 Conduction through Fins with a Variable Cross-Sectional Area: Bessel Function Solutions
		2.4.1 Bessel Functions and Their Solutions
		2.4.2 Radiation Effect
	Remarks
	Problems
	References
Chapter 3 2-D Steady-State Heat Conduction
	3.1 Method of Separation of Variables: Given Temperature BC
	3.2 Method of Separation of Variables: Given Heat Flux and Convection BCs
		3.2.1 Given Surface Heat Flux BC
		3.2.2 Given Surface Convection BC
	3.3 Principle of Superposition for Nonhomogeneous BCs
		3.3.1 2-D Heat Conduction in Cylindrical Coordinates*
	3.4 Principle of Superposition for Multidimensional Heat Conduction and for Nonhomogeneous Equations
		3.4.1 3-D Heat Conduction Problem*
		3.4.2 Nonhomogeneous Heat Conduction Problem*
	Remarks
	Problems
	References
Chapter 4 Transient Heat Conduction
	4.1 Method of Lumped Capacitance for 0-D Problems
		4.1.1 Radiation Effect
	4.2 Method of Separation of Variables for 1-D and Multidimensional Transient Conduction Problems
		4.2.1 1-D Transient Heat Conduction in a Slab
		4.2.2 Multidimensional Transient Heat Conduction in a Slab (2-D or 3-D)*
		4.2.3 1-D Transient Heat Conduction in a Rectangle with Heat Generation*
		4.2.4 Transient Heat Conduction in the Cylindrical Coordinate System*
	4.3 1-D Transient Heat Conduction in a Semiinfinite Solid Material
		4.3.1 Similarity Method for Semiinfinite Solid Material
		4.3.2 Laplace Transform Method for Semiinfinite Solid Material*
	4.4 Heat Conduction with Moving Boundaries*
		4.4.1 Freezing and Solidification Problems Using the Similarity Method
		4.4.2 Melting and Liquification Problems Using the Similarity Method
		4.4.3 Ablation
	4.5 Duhamel’s Theorem for Time-Dependent Boundary Condition Problems*
		4.5.1 Duhamel’s Theorem for the 1-D Plane Wall Problem
		4.5.2 Duhamel’s Theorem for the 1-D Semiinfinite Solid Problem
		4.5.3 Duhamel’s Theorem for Cylindrical Coordinate Systems
	4.6 Green’s Function for Time-Dependent, Nonhomogeneous Problems*
		4.6.1 Green’s Function in a Rectangular Coordinate System
		4.6.2 Green’s Function in a Cylindrical Coordinate System
	Remarks
	Problems
	References
Chapter 5 Numerical Analysis in Heat Conduction
	5.1 Finite-Difference Energy Balance Method for 2-D Steady-State Heat Conduction
	5.2 Finite-Difference Energy Balance Method for 1-D Transient Heat Conduction
		5.2.1 Explicit Finite-Difference Method
		5.2.2 Implicit Finite-Difference Method
	5.3 2 -D Transient Heat Conduction
	5.4 Finite-Difference Method for Cylindrical Coordinates
		5.4.1 Steady Heat Conduction in Cylindrical Coordinates
		5.4.2 Transient Heat Conduction in Cylindrical Coordinates
	Remarks
	Problems
	References
Chapter 6 Heat Convection Equations
	6.1 Boundary Layer Concepts
	6.2 General Heat Convection Equations
	6.3 2-D Heat Convection Equations
	6.4 Boundary-Layer Approximations
		6.4.1 Boundary-Layer Similarity/Dimensional Analysis
		6.4.2 Reynolds Analogy
	6.5 Mass Transfer*
		6.5.1 The Concentration Boundary
		6.5.2 Heat, Mass, and Momentum Transfer Analogy
		6.5.3 Evaporative Cooling Mass Transfer
		6.5.4 Naphthalene Sublimation Mass Transfer
	Remarks
	Problems
	References
Chapter 7 External Forced Convection
	7.1 Laminar Flow and Heat Transfer over a Flat Surface: Similarity Solution
		7.1.1 Summary of the Similarity Solution for Laminar Boundary- Layer Flow and Heat Transfer over a Flat Surface
	Remarks
	7.2 Laminar Flow and Heat Transfer over a Flat Surface: Integral Method
		7.2.1 Momentum Integral Equation by Von Karman
		7.2.2 Energy Integral Equation by Pohlhausen
		7.2.3 Outline for the Application of the Integral Approximation Method
		7.2.4 Other Boundary Layer Properties*
	Remarks
	7.3 Laminar Flow and Heat Transfer with a Constant Pressure Gradient*
		7.3.1 The RK Calculation to Solve for the Similarity Solution
		7.3.2 Integral Approximation Methods for Pressure Gradient Flows
		7.3.3 Integral Approximation Method for Boundary-Layer Flow with a Nonuniform Wall Temperature
	7.4 Heat Transfer in High-Velocity Flows*
		7.4.1 Adiabatic Wall Temperature and Recovery Factor
		7.4.2 High-Velocity Flow over a Flat Plate
	Problems
	References
Chapter 8 Internal Forced Convection
	8.1 Velocity and Temperature Profiles in a Circular Tube or between Parallel Plates
	8.2 Fully Developed Laminar Flow and Heat Transfer in a Circular Tube
		8.2.1 Fully Developed Flow in a Tube: Friction Factor
		8.2.2 Case 1: Uniform Wall Heat Flux
		8.2.3 Case 2: Uniform Wall Temperature
	8.3 Fully Developed Laminar Flow and Heat Transfer between Parallel Plates
		8.3.1 Two Plates with Symmetric, Uniform, Heat Fluxes
		8.3.2 Two Plates with Asymmetric Heat Fluxes
	8.4 Fully Developed Laminar Flow and Heat Transfer in a Rectangular Channel*
		8.4.1 Fully Developed Laminar Flow
		8.4.2 Thermally and Fully Developed Laminar Flow with Uniform Wall Heat Flux
		8.4.3 Thermally and Fully Developed Laminar Flow with Uniform Wall Temperature
	8.5 Thermally Developing Heat Transfer in a Circular Tube—Separation of Variables Technique*
		8.5.1 Combined Hydrodynamic and Thermal Entry Flow
		8.5.2 Thermal Boundary Condition: Given Wall Temperature
		8.5.3 Thermal Boundary Condition: Given Wall Heat Flux
	Remarks
	Problems
	References
Chapter 9 Natural Convection
	9.1 Laminar Natural Convection on a Vertical Wall: Similarity Solution
	9.2 Similarity Solution for Variable Wall Temperature
	9.3 Laminar Natural Convection on a Vertical Wall: Integral Method
	Remarks
	9.4 Laminar Mixed Convection—Nonsimilarity Transformation*
		9.4.1 Mixed Convection along a Vertical Flat Plate
		9.4.2 Mixed Convection over a Horizontal Flat Plate
	Remarks
	Problems
	References
Chapter 10 Turbulent Flow Heat Transfer
	10.1 Reynolds-Averaged Navier–Stokes (RANS) Equations
		10.1.1 Continuity Equation
		10.1.2 Momentum Equations: RANS
		10.1.3 Enthalpy/Energy Equation
		10.1.4 Concept of Eddy or Turbulent Diffusivity
		10.1.5 Reynolds Analogy for Turbulent Flow and Heat Transfer
	10.2 Prandtl Mixing Length Theory and Law of the Wall for Velocity and Temperature Profiles
	10.3 Turbulent Flow Heat Transfer
		10.3.1 Turbulent Internal Flow Heat Transfer Coefficient
		10.3.2 Turbulent External Flow Heat Transfer Coefficient
		10.3.3 Law of the Wall for Velocity and Temperature Profiles: Two-Region Analysis
	Remarks
	10.4 Turbulent Flow—Shear Stress and Pressure Drop
		10.4.1 Turbulent Internal Flow Friction Factor
		10.4.2 Turbulent External Flow Friction Factor
	10.5 Numerical Modelling for Turbulent Flow Heat Transfer
		10.5.1 Zero Equation Model–Prandtl Mixing Length Theory (1925)
		10.5.2 Standard Two-Equation Models (k-???)
		10.5.3 Two Equation Models (k-???) for Thermal Transport
	Remarks
	Problems
	References
Chapter 11 Fundamental Radiation
	11.1 Thermal Radiation Intensity and Emissive Power
	11.2 Surface Radiation Properties for Blackbody and Real-Surface Radiation
	11.3 Solar and Atmospheric Radiation
	Remarks
	Problems
	References
Chapter 12 View Factors
	12.1 View Factors
	12.2 Evaluation of the View Factor
		12.2.1 Method 1—Hottel’s Crossed-String Method for 2-D Geometries
		12.2.2 Method 2—Double-Area Integration*
		12.2.3 Method 3—Contour Integration*
		12.2.4 Method 4—Algebraic Method
	Remarks
	Problems
	References
Chapter 13 Radiation Exchange in a Nonparticipating Medium
	13.1 Radiation Exchange between Gray Diffuse Isothermal Surfaces in an Enclosure
		13.1.1 Method 1: Electric Network Analogy
		13.1.2 Method 2: Matrix Linear Equations
	13.2 Radiation Exchange between Gray Diffuse Nonisothermal Surfaces*
		13.2.1 Radiation Exchange between Nongray Diffuse Isothermal Surfaces
		13.2.2 Radiation Interchange among Diffuse and Nondiffuse (Specular) Surfaces [4,5]
		13.2.3 Energy Balance in an Enclosure with a Diffuse and Specular Surface
	13.3 Combined Modes of Heat Transfer*
		13.3.1 Radiation with Conduction
		13.3.2 Radiation with Convection
	Remarks
	Problems
	References
Chapter 14 Radiation Transfer through Gases
	14.1 Gas Radiation Properties
		14.1.1 Volumetric Absorption
		14.1.2 Geometry of Gas Radiation: Geometric Mean Beam Length
	14.2 Radiation Exchange between an Isothermal Gray Gas and Gray Diffuse Isothermal Surfaces in an Enclosure
		14.2.1 Matrix Linear Equations
		14.2.2 Electric Network Analogy
	14.3 Radiation Transfer through Gases with Nonuniform Temperature*
		14.3.1 Cryogenic Thermal Insulation
		14.3.2 Radiation Transport Equation in the Participating Medium
		14.3.3 Radiation Transfer through Gray Gas between Two Gray and Diffuse Parallel Plates
	Remarks
	Problems
	References
Chapter 15 Laminar–Turbulent Transitional Heat Transfer*
	15.1 Transition Phenomena
	15.2 Natural Transition–Tollmien Schlichting Wave Instability Theory
		15.2.1 Small Disturbance Stability Theory
		15.2.2 Critical Reynolds Number for Natural Transition
		15.2.3 Effect of Free Stream Turbulence Level on Transition
	15.3 Bypass Transition
		15.3.1 Turbulent Spot Production, Growth, and Convection
		15.3.2 Turbulent Spot Induced Transition Model
		15.3.3 Unsteady Wake-Induced Transition Model
		15.3.4 Surface Roughness-Induced Transition Model
		15.3.5 Film Cooling-Induced Transition
	15.4 Heat Transfer Correlation for Laminar, Transitional, and Turbulent Flow
	Remarks
	References
Chapter 16 Turbulent Flow Heat Transfer Enhancement*
	16.1 Heat Transfer Enhancement Methods
		16.1.1 Sand Grain Roughness
		16.1.2 Repeated Rib Roughness
		16.1.3 Rectangular Channels with Repeated Rib Roughness
	16.2 Friction and Heat Transfer Similarity Laws for Flow in Circular Tubes
		16.2.1 Flow in Circular Tubes with Sand Grain Roughness
			16.2.1.1 Friction Similarity Law
			16.2.1.2 Heat Transfer Similarity Law
		16.2.2 Flow in Circular Tubes with Repeated Rib Roughness
		16.2.3 Flow between Parallel Plates with Repeated Rib Roughness
	16.3 Friction and Heat Transfer Similarity Laws for Flow in Rectangular Channels
		16.3.1 Flow in a Rectangular Channel with Four-Sided, Rib-Roughened Walls
			16.3.1.1 Friction Similarity Law
			16.3.1.2 Heat Transfer Similarity Law
		16.3.2 Flow in Rectangular Channels with Two Opposite-Sided, Rib-Roughened Walls
	16.4 Heat Transfer Enhancement for Turbine Blade Internal Cooling Applications
		16.4.1 Heat Transfer Enhancement in Rectangular Channels with Rib Turbulators
			16.4.1.1 Angled Ribs and Heat Transfer Correlation
			16.4.1.2 High Performance V-Shaped and Delta-Shaped Ribs
		16.4.2 Heat Transfer Enhancement with Rib Turbulators in Rotating Channels
			16.4.2.1 Rotor Blade Internal Cooling
			16.4.2.2 Heat Transfer Correlation with Rotation Number and Buoyancy Parameter
			16.4.2.3 Summary of Rotation parameters
			16.4.2.4 Rotational Effect on Coolant Channel Heat Transfer
			16.4.2.5 Channel Aspect Ratio and Orientation Effect
		16.4.3 Heat Transfer Enhancement with Impingement Cooling and Pin-Fin Cooling
	Remarks
	References
Appendix
Index




نظرات کاربران