دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Neso Sojic
سری:
ISBN (شابک) : 9781788015776, 9781839160066
ناشر: Royal Society of Chemistry
سال نشر: 2020
تعداد صفحات: [516]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نورتابی شیمیایی شیمیایی تحلیلی: از مبانی تا سنجش زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Copyright 9781788015776-fp005.pdf Preface: Preface 9781788015776-fp007.pdf Contents: Contents 9781788015776-00001.pdf Chapter 1: Introduction and Overview of Electrogenerated Chemiluminescence 1.1 Introduction 1.2 Fundamentals of Electrochemistry and Photophysics for ECL 1.2.1 Basic Electrochemical Principles 1.2.2 Basic Photophysical Principles 1.2.3 Energetics and Kinetics 1.3 Mechanistic Pathways of ECL 1.3.1 Electron-transfer Reactions Involving the Luminophore 1.3.1.1 The Annihilation Pathway 1.3.1.2 Coreactant Pathway: A Tandem System 1.3.2 Bond-breaking Reactions Within the Luminophore Frame 1.3.2 Bond-breaking Reactions Within the Luminophore Frame 1.3.3 Hot Electron-induced ECL 1.4 Key Protagonists in the ECL 1.4.1 Luminophores 1.4.2 Coreactants 1.4.3 Electrode Materials 1.5 Analytical Applications 1.5.1 Analytical Strategies 1.5.2 Bioassays 1.6 Conclusion References 9781788015776-00029.pdf Chapter 2: Energetic and Kinetic Aspects of ECL Generation 2.1 Introduction 2.2 Energetics of ECL Reactants Annihilation 2.3 ECL Emission from the Lowest Excited Triplet State 2.3 ECL Emission from the Lowest Excited Triplet State 2.4 ECL Emission from the Lowest Excited Singlet State 2.4 ECL Emission from the Lowest Excited Singlet State 2.5 Concluding Remarks Acknowledgments References 9781788015776-00059.pdf Chapter 3: Efficient ECL Luminophores 3.1 Introduction 3.2 Inorganic Systems 3.2.1 Ru(bpy)32+ and Its Derivatives 3.2.2 Cyclometalated Iridium(iii) Complexes 3.2.3 Other Metal Complexes 3.3 Organic Systems 3.3.1 Polycyclic Aromatic Hydrocarbons (PAHs) 3.3.2 Fluorescent Dyes and their Derivatives 3.4 Conclusion References 9781788015776-00092.pdf Chapter 4: Electrochemiluminescence Coreactants 4.1 Introduction 4.2 Oxidative-Reduction Coreactants 4.2.1 Oxalate (C2O42-) System 4.2.2 Tri-n-propylamine (TPA) 4.2.3 2-(Dibutylamino)ethanol (DBAE) 4.2.4 Other Amine-related Coreactants 4.2.4.1 Amino Acids and Peptides 4.2.4.2 Nucleic Acids 4.2.4.3 NADH 4.2.4.4 Alkaloids and Pharmaceuticals 4.2.4.5 Pesticides 4.2.4.6 Amines with Aromatic Diol Group 4.2.4.7 Hydrazine and Relative Derivatives 4.2.5 Organic Acids/Alcohols and Relative Derivatives 4.2.5.1 Pyruvate 4.2.5.2 Hydroxyl Carboxylic Acid and Related Derivatives 4.2.5.3 Alcohol 4.2.5.4 Other Organic Molecules 4.2.6 QDs 4.2.7 Sulphite 4.3 Reductive-Oxidative Coreactants 4.3.1 Peroxydisulfate 4.3.2 Oxygen 4.3.3 Hydrogen Peroxide 4.4 Conclusions Acknowledgments References 9781788015776-00134.pdf Chapter 5: Theoretical Concepts Underlying ECL Generation 5.1 Introduction 5.2 Theory: Mathematical Modelling and Computing 5.3 Theory of Transient and Steady-state ECL at Dual Hemi-cylinder Electrode Assemblies 5.4 Simulations of ECL in Coreactant Systems 5.5 Theoretical Modelling and Optimization of ECL from Ru2+-doped, Immobilised Silica Nanoparticles 5.5 Theoretical Modelling and Optimization of ECL from Ru2+-doped, Immobilised Silica Nanoparticles 5.6 Conclusions Acknowledgments References 9781788015776-00159.pdf Chapter 6: The Essential Role of Electrode Materials in ECL Applications 6.1 Introduction 6.2 Noble Electrode Materials: Platinum and Gold 6.3 Carbon-based Materials 6.4 Transparent Electrodes 6.5 Paper-based Materials and Disposable Electrodes 6.6 Boron-doped Diamond (BDD) Electrodes 6.7 Conclusions Acknowledgments References 9781788015776-00176.pdf Chapter 7: Wireless ECL Generation Based on Bipolar Electrochemistry 7.1 Introduction 7.2 The Fundamentals of Bipolar Electrochemistry 7.3 Bipolar Electrochemistry Classification 7.3.1 Open Bipolar Electrochemistry 7.3.2 Closed Bipolar Electrochemistry 7.3.3 Wireless Powered and Self-powered Bipolar Electrochemistry 7.3.3 Wireless Powered and Self-powered Bipolar Electrochemistry 7.3.4 Split Bipolar Electrochemistry 7.4 BPE-ECL Sensing 7.4.1 The Analyte Is ECL-related or Coupled with the ECL Reaction at the Opposite Pole 7.4.2 Analytes Can Be Transferred to the ECL-related or ECL-coupled Substances 7.5 Conclusion Acknowledgments References 9781788015776-00200.pdf Chapter 8: Multicolour Electrochemiluminescence 8.1 Introduction 8.2 Electrochemiluminescent Iridium Complexes 8.3 Multicolour ECL from Mixtures of Emitters 8.4 Single Component Multicolour ECL 8.5 Multicolour ECL from Nanomaterials 8.6 Multicolour Bipolar ECL 8.7 Instrumental Aspects of Multicolour ECL 8.8 Conclusion References 9781788015776-00247.pdf Chapter 9: ECL of Nanomaterials: Novel Materials, Detection Strategies and Applications 9.1 Introduction and Background 9.2 Electrochemiluminescence Using Nanomaterials 9.3 Quantum Dots and Colloidal Semiconductor Nanocrystals 9.3 Quantum Dots and Colloidal Semiconductor Nanocrystals 9.4 Carbon and Composite Nanomaterials 9.5 Inorganic Nanoparticles 9.6 Metal Nanoparticles 9.7 Doped Silica Nanoparticles 9.8 Metal-Organic Frameworks 9.9 ‘MolecularÇ Nanomaterials 9.9.1 DNA Nanotubes 9.9.2 Molecular Microcrystals 9.9.3 Polymer Quantum Dots 9.10 Conclusions and Future Prospects References 9781788015776-00274.pdf Chapter 10: ECL Detection of Nanoparticles 10.1 Introduction 10.2 Theoretical and Experimental Background 10.2.1 Electrochemistry Procedures of Nanoparticles 10.2.2 Fundamentals of ECL 10.2.3 ECL Detection Instrumentation 10.3 ECL Detection of Various Nanoparticles 10.3.1 Semiconductor Nanoparticles 10.3.1.1 Elemental Semiconductor Nanoparticles 10.3.1.2 Metal Chalcogenide Nanoparticles 10.3.1.3 Metal Oxide Nanoparticles 10.3.2 Metal Nanoparticles 10.3.3 Carbon Nanoparticles 10.4 Summary and Outlook References 9781788015776-00309.pdf Chapter 11: Single Entity Electrogenerated Chemiluminescence 11.1 Introduction 11.2 ECL of Nano-entities 11.2.1 ECL from Single 9,10-Diphenylanthracene Molecules in Solution 11.2.2 Single Nanoparticle ECL 11.2.2.1 ECL of Poly(9,9-dioctylfluorene-co-benzothiadiazole) Nanoparticles 11.2.2.1 ECL of Poly(9,9-dioctylfluorene-co-benzothiadiazole) Nanoparticles 11.2.2.2 ECL from Individual Au Nanoparticles 11.3 Sub-micron and Micron Sized Entities 11.3.1 Sub-micron Toluene Droplets in Water 11.3.2 Polystyrene Microbead Decorated with Ru(bpy)32+ 11.3.3 Cells Labelled with Ruthenium Ru(bpy)32+ 11.4 Conclusion References 9781788015776-00331.pdf Chapter 12: Enzymatic Assays 12.1 Introduction 12.2 Enzymes and ECL Reaction Coupling 12.2.1 Enzyme Commission Number (EC) 12.2.2 ECL Biosensing Systems with Oxidizing Enzymes 12.2.2.1 Oxidases and Luminol ECL Reactions 12.2.2.2 Dehydrogenases and Ruthenium ECL Reactions 12.2.3 ECL Biosensing Systems with other Enzymes 12.2.3.1 Proteases 12.2.3.2 Kinases and Phosphatases 12.2.3.3 Enzymes Active on DNA (Nucleases, Demethylases and Methylases) 12.2.3.3 Enzymes Active on DNA (Nucleases, Demethylases and Methylases) 12.2.3.4 Glycosyl Transferases 12.2.3.5 Superoxide Dismutase 12.2.3.6 Cytochromes P450 12.3 Enzymatic ECL Systems Without Nanomaterials 12.3.1 Luminophores in Solution 12.3.1.1 Bioassays 12.3.1.2 Biosensors 12.3.2 Immobilized luminophores 12.3.2.1 Bioassays 12.3.2.2 Biosensors 12.3.2.2.1 Ruthenium immobilization 12.3.2.2.2 Luminol Entrapment 12.3.2.2.3 Polymeric Luminol 12.3.2.2.4 Other Luminophores (Porphyrins) 12.4 More Recent Enzymatic ECL Systems with Nanomaterials 12.4 More Recent Enzymatic ECL Systems with Nanomaterials 12.4.1 Luminophores in Solution 12.4.1.1 Gold Nanoparticles and Nanocomposites _s_h_o_w_357_ Outline placeholder Outline placeholder 12.4.1.2 Silver Nanocomposites 12.4.1.3 Titanate Nanotubes and Nanocomposites of TiO2 12.4.1.4 Magnetic Nanoparticles 12.4.1.5 Carbon-based Nanomaterials (CNTs, Graphene Sheets etc.) 12.4.1.5 Carbon-based Nanomaterials (CNTs, Graphene Sheets etc.) 12.4.2 Luminophore Co-immobilized with the Nanomaterials (Reagent-less Biosensors) 12.4.2.1 Gold Nanoparticles and Nanocomposites 12.4.2.2 Silver Nanoparticles and Nanocomposites 12.4.2.3 Silica Nanoparticles and Nanocomposites 12.4.2.4 Carbon-based Nanomaterials (CNTs, Graphene Sheets, etc.) 12.4.2.4 Carbon-based Nanomaterials (CNTs, Graphene Sheets, etc.) 12.4.3 Electroluminescent Nanomaterials 12.4.3.1 Cadmium-based QDs (CdS, CdSe, CdTe) 12.4.3.2 Nanocomposites with Cadmium- or Zinc-based QDs (ZnS, CdS, CdSe, CdTe) 12.4.3.3 TiO2 Nanocrystals and Nanocomposites 12.4.3.4 Carbon-based Quantum Dots 12.4.3.5 Carbon Nitride-based Quantum Dots 12.4.3.6 Polymer Dots 12.4.3.7 More Complex QDs 12.5 New Trends 12.5.1 Bipolar Electrode (BPE) Systems 12.5.2 Ratiometric Systems 12.6 Conclusion Abbreviations References 9781788015776-00386.pdf Chapter 13: DNA-based ECL Assays 13.1 Introduction 13.2 General Sensing Strategies in DNA-based ECL Assays 13.2 General Sensing Strategies in DNA-based ECL Assays 13.2.1 Recognition Chemistries 13.2.2 Signalling Approaches and Signal Amplification Strategies 13.2.2 Signalling Approaches and Signal Amplification Strategies 13.2.2.1 Label-based and Label-free Signalling Approaches 13.2.2.2 Signal Amplification Strategies 13.2.2.2.1 Nanomaterials-based Signal Amplification 13.2.2.2.2 Nucleic Acid-based Amplification 13.2.2.2.2.1 RCA-based Signal Amplification 13.2.2.2.2.2 HCR-based Signal Amplification 13.2.2.2.3 DNA Nanostructure-based Signal Amplification 13.2.2.2.3.1 DNA Tetrahedron-based Signal Amplification 13.2.2.2.3.2 DNA Machine-based Signal Amplification 13.2.3 General Biosensing Formats of DNA-based ECL Assays 13.2.3.1 Signal-on Sensing Format 13.2.3.1.1 Signal-On Induced by Introduction of Luminophores 13.2.3.1.2 Signal-on Induced by Release of the Quenchers 13.2.3.1.3 Signal-on Regulated by ECL Coreaction 13.2.3.2 Signal-off Sensing Format 13.2.3.2.1 Signal-off Induced by ECL Quencher 13.2.3.2.2 Signal-off Induced by Release of Luminophores 13.2.3.2.3 Signal-off Induced by Consumption of Coreactants 13.2.3.3 Electrochemiluminescence Resonance Energy Transfer (ECL-RET) 13.3 Analytical Applications 13.3.1 Detection of Nucleic acids 13.3.1.1 Detection of DNA 13.3.1.2 Detection of miRNA 13.3.1.3 Detection of Proteins 13.3.1.4 Detection of Enzymes and Enzyme activities 13.3.1.5 Detection of Small Molecules 13.3.1.6 Detection of Metal Ions 13.3.1.7 Detection of Cancer Cells 13.3.1.8 ECL Imaging 13.4 Conclusion and Perspectives References 9781788015776-00416.pdf Chapter 14: Microfluidic ECL and Voltammetric Arrays for Metabolite-related DNA Damage 14.1 Introduction 14.2 A Brief History of DNA Damage Assays 14.3 Microfluidic Arrays for DNA Adduction 14.4 ECL and Electrochemical Arrays to Measure DNA Oxidation 14.5 Microfluidic Arrays to Measure both DNA Adduction and Oxidation 14.6 Summary and Outlook for the Future Acknowledgments References 9781788015776-00443.pdf Chapter 15: Automated Immunoassays for the Detection of Biomarkers in Body Fluids 15.1 Introduction 15.2 Instrumentation 15.2.1 Components of a cobas e Immunoassay Analyzer 15.2.2 Elecsys® Measuring Cell 15.2.3 Detection Cycle 15.3 ECL Mechanism 15.4 Additives 15.4.1 Carbonic Acid Amides 15.4.2 Boric Acid 15.4.3 Combination of Propanamide and Boric Acid 15.5 Label Chemistry 15.5.1 Ruthenium Labels 15.5.2 Iridium Labels 15.5.3 Conjugation Methods 15.6 Elecsys® Immunoassays 15.6.1 Sandwich Assays 15.6.2 Double Antigen Sandwich Assays 15.6.3 Competitive Assays 15.6.4 Back-titration Binding Assays 15.6.5 ç-Capture Assays 15.6.6 Combined Assays 15.6.7 Elecsys® Assay Menu 15.7 Conclusions References 9781788015776-00471.pdf Chapter 16: Electrochemiluminescence Imaging 16.1 Introduction 16.1.1 Apparatus of ECL Imaging 16.2 Applications of ECL Imaging for Bioassays 16.2.1 Immunoassays 16.2.2 Genotoxicity Screening 16.2.3 Enzyme-based Bioanalysis 16.3 ECL Imaging of Single Objects 16.3.1 Single Cells 16.3.2 Single Particles 16.4 Bipolar Electrodes for ECL Imaging 16.5 Conclusion References