ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays

دانلود کتاب نورتابی شیمیایی شیمیایی تحلیلی: از مبانی تا سنجش زیستی

Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays

مشخصات کتاب

Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781788015776, 9781839160066 
ناشر: Royal Society of Chemistry 
سال نشر: 2020 
تعداد صفحات: [516] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 Mb 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نورتابی شیمیایی شیمیایی تحلیلی: از مبانی تا سنجش زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Copyright
9781788015776-fp005.pdf
	Preface: Preface
9781788015776-fp007.pdf
	Contents: Contents
9781788015776-00001.pdf
	Chapter 1: Introduction and Overview of Electrogenerated Chemiluminescence
		1.1 Introduction
		1.2 Fundamentals of Electrochemistry and Photophysics for ECL
			1.2.1 Basic Electrochemical Principles
			1.2.2 Basic Photophysical Principles
			1.2.3 Energetics and Kinetics
		1.3 Mechanistic Pathways of ECL
			1.3.1 Electron-transfer Reactions Involving the Luminophore
				1.3.1.1 The Annihilation Pathway
				1.3.1.2 Coreactant Pathway: A Tandem System
			1.3.2 Bond-breaking Reactions Within the Luminophore Frame
			1.3.2 Bond-breaking Reactions Within the Luminophore Frame
			1.3.3 Hot Electron-induced ECL
		1.4 Key Protagonists in the ECL
			1.4.1 Luminophores
			1.4.2 Coreactants
			1.4.3 Electrode Materials
		1.5 Analytical Applications
			1.5.1 Analytical Strategies
			1.5.2 Bioassays
		1.6 Conclusion
		References
9781788015776-00029.pdf
	Chapter 2: Energetic and Kinetic Aspects of ECL Generation
		2.1 Introduction
		2.2 Energetics of ECL Reactants Annihilation
		2.3 ECL Emission from the Lowest Excited Triplet State
		2.3 ECL Emission from the Lowest Excited Triplet State
		2.4 ECL Emission from the Lowest Excited Singlet State
		2.4 ECL Emission from the Lowest Excited Singlet State
		2.5 Concluding Remarks
		Acknowledgments
		References
9781788015776-00059.pdf
	Chapter 3: Efficient ECL Luminophores
		3.1 Introduction
		3.2 Inorganic Systems
			3.2.1 Ru(bpy)32+ and Its Derivatives
			3.2.2 Cyclometalated Iridium(iii) Complexes
			3.2.3 Other Metal Complexes
		3.3 Organic Systems
			3.3.1 Polycyclic Aromatic Hydrocarbons (PAHs)
			3.3.2 Fluorescent Dyes and their Derivatives
		3.4 Conclusion
		References
9781788015776-00092.pdf
	Chapter 4: Electrochemiluminescence Coreactants
		4.1 Introduction
		4.2 Oxidative-Reduction Coreactants
			4.2.1 Oxalate (C2O42-) System
			4.2.2 Tri-n-propylamine (TPA)
			4.2.3 2-(Dibutylamino)ethanol (DBAE)
			4.2.4 Other Amine-related Coreactants
				4.2.4.1 Amino Acids and Peptides
				4.2.4.2 Nucleic Acids
				4.2.4.3 NADH
				4.2.4.4 Alkaloids and Pharmaceuticals
				4.2.4.5 Pesticides
				4.2.4.6 Amines with Aromatic Diol Group
				4.2.4.7 Hydrazine and Relative Derivatives
			4.2.5 Organic Acids/Alcohols and Relative Derivatives
				4.2.5.1 Pyruvate
				4.2.5.2 Hydroxyl Carboxylic Acid and Related Derivatives
				4.2.5.3 Alcohol
				4.2.5.4 Other Organic Molecules
			4.2.6 QDs
			4.2.7 Sulphite
		4.3 Reductive-Oxidative Coreactants
			4.3.1 Peroxydisulfate
			4.3.2 Oxygen
			4.3.3 Hydrogen Peroxide
		4.4 Conclusions
		Acknowledgments
		References
9781788015776-00134.pdf
	Chapter 5: Theoretical Concepts Underlying ECL Generation
		5.1 Introduction
		5.2 Theory: Mathematical Modelling and Computing
		5.3 Theory of Transient and Steady-state ECL at Dual Hemi-cylinder Electrode Assemblies
		5.4 Simulations of ECL in Coreactant Systems
		5.5 Theoretical Modelling and Optimization of ECL from Ru2+-doped, Immobilised Silica Nanoparticles
		5.5 Theoretical Modelling and Optimization of ECL from Ru2+-doped, Immobilised Silica Nanoparticles
		5.6 Conclusions
		Acknowledgments
		References
9781788015776-00159.pdf
	Chapter 6: The Essential Role of Electrode Materials in ECL Applications
		6.1 Introduction
		6.2 Noble Electrode Materials: Platinum and Gold
		6.3 Carbon-based Materials
		6.4 Transparent Electrodes
		6.5 Paper-based Materials and Disposable Electrodes
		6.6 Boron-doped Diamond (BDD) Electrodes
		6.7 Conclusions
		Acknowledgments
		References
9781788015776-00176.pdf
	Chapter 7: Wireless ECL Generation Based on Bipolar Electrochemistry
		7.1 Introduction
		7.2 The Fundamentals of Bipolar Electrochemistry
		7.3 Bipolar Electrochemistry Classification
			7.3.1 Open Bipolar Electrochemistry
			7.3.2 Closed Bipolar Electrochemistry
			7.3.3 Wireless Powered and Self-powered Bipolar Electrochemistry
			7.3.3 Wireless Powered and Self-powered Bipolar Electrochemistry
			7.3.4 Split Bipolar Electrochemistry
		7.4 BPE-ECL Sensing
			7.4.1 The Analyte Is ECL-related or Coupled with the ECL Reaction at the Opposite Pole
			7.4.2 Analytes Can Be Transferred to the ECL-related or ECL-coupled Substances
		7.5 Conclusion
		Acknowledgments
		References
9781788015776-00200.pdf
	Chapter 8: Multicolour Electrochemiluminescence
		8.1 Introduction
		8.2 Electrochemiluminescent Iridium Complexes
		8.3 Multicolour ECL from Mixtures of Emitters
		8.4 Single Component Multicolour ECL
		8.5 Multicolour ECL from Nanomaterials
		8.6 Multicolour Bipolar ECL
		8.7 Instrumental Aspects of Multicolour ECL
		8.8 Conclusion
		References
9781788015776-00247.pdf
	Chapter 9: ECL of Nanomaterials: Novel Materials, Detection Strategies and Applications
		9.1 Introduction and Background
		9.2 Electrochemiluminescence Using Nanomaterials
		9.3 Quantum Dots and Colloidal Semiconductor Nanocrystals
		9.3 Quantum Dots and Colloidal Semiconductor Nanocrystals
		9.4 Carbon and Composite Nanomaterials
		9.5 Inorganic Nanoparticles
		9.6 Metal Nanoparticles
		9.7 Doped Silica Nanoparticles
		9.8 Metal-Organic Frameworks
		9.9 ‘MolecularÇ Nanomaterials
			9.9.1 DNA Nanotubes
			9.9.2 Molecular Microcrystals
			9.9.3 Polymer Quantum Dots
		9.10 Conclusions and Future Prospects
		References
9781788015776-00274.pdf
	Chapter 10: ECL Detection of Nanoparticles
		10.1 Introduction
		10.2 Theoretical and Experimental Background
			10.2.1 Electrochemistry Procedures of Nanoparticles
			10.2.2 Fundamentals of ECL
			10.2.3 ECL Detection Instrumentation
		10.3 ECL Detection of Various Nanoparticles
			10.3.1 Semiconductor Nanoparticles
				10.3.1.1 Elemental Semiconductor Nanoparticles
				10.3.1.2 Metal Chalcogenide Nanoparticles
				10.3.1.3 Metal Oxide Nanoparticles
			10.3.2 Metal Nanoparticles
			10.3.3 Carbon Nanoparticles
		10.4 Summary and Outlook
		References
9781788015776-00309.pdf
	Chapter 11: Single Entity Electrogenerated Chemiluminescence
		11.1 Introduction
		11.2 ECL of Nano-entities
			11.2.1 ECL from Single 9,10-Diphenylanthracene Molecules in Solution
			11.2.2 Single Nanoparticle ECL
				11.2.2.1 ECL of Poly(9,9-dioctylfluorene-co-benzothiadiazole) Nanoparticles
				11.2.2.1 ECL of Poly(9,9-dioctylfluorene-co-benzothiadiazole) Nanoparticles
				11.2.2.2 ECL from Individual Au Nanoparticles
		11.3 Sub-micron and Micron Sized Entities
			11.3.1 Sub-micron Toluene Droplets in Water
			11.3.2 Polystyrene Microbead Decorated with Ru(bpy)32+
			11.3.3 Cells Labelled with Ruthenium Ru(bpy)32+
		11.4 Conclusion
		References
9781788015776-00331.pdf
	Chapter 12: Enzymatic Assays
		12.1 Introduction
		12.2 Enzymes and ECL Reaction Coupling
			12.2.1 Enzyme Commission Number (EC)
			12.2.2 ECL Biosensing Systems with Oxidizing Enzymes
				12.2.2.1 Oxidases and Luminol ECL Reactions
				12.2.2.2 Dehydrogenases and Ruthenium ECL Reactions
			12.2.3 ECL Biosensing Systems with other Enzymes
				12.2.3.1 Proteases
				12.2.3.2 Kinases and Phosphatases
				12.2.3.3 Enzymes Active on DNA (Nucleases, Demethylases and Methylases)
				12.2.3.3 Enzymes Active on DNA (Nucleases, Demethylases and Methylases)
				12.2.3.4 Glycosyl Transferases
				12.2.3.5 Superoxide Dismutase
				12.2.3.6 Cytochromes P450
		12.3 Enzymatic ECL Systems Without Nanomaterials
			12.3.1 Luminophores in Solution
				12.3.1.1 Bioassays
				12.3.1.2 Biosensors
			12.3.2 Immobilized luminophores
				12.3.2.1 Bioassays
				12.3.2.2 Biosensors
					12.3.2.2.1 Ruthenium immobilization
					12.3.2.2.2 Luminol Entrapment
					12.3.2.2.3 Polymeric Luminol
					12.3.2.2.4 Other Luminophores (Porphyrins)
		12.4 More Recent Enzymatic ECL Systems with Nanomaterials
		12.4 More Recent Enzymatic ECL Systems with Nanomaterials
			12.4.1 Luminophores in Solution
				12.4.1.1 Gold Nanoparticles and Nanocomposites
	_s_h_o_w_357_
		Outline placeholder
			Outline placeholder
				12.4.1.2 Silver Nanocomposites
				12.4.1.3 Titanate Nanotubes and Nanocomposites of TiO2
				12.4.1.4 Magnetic Nanoparticles
				12.4.1.5 Carbon-based Nanomaterials (CNTs, Graphene Sheets etc.)
				12.4.1.5 Carbon-based Nanomaterials (CNTs, Graphene Sheets etc.)
			12.4.2 Luminophore Co-immobilized with the Nanomaterials (Reagent-less Biosensors)
				12.4.2.1 Gold Nanoparticles and Nanocomposites
				12.4.2.2 Silver Nanoparticles and Nanocomposites
				12.4.2.3 Silica Nanoparticles and Nanocomposites
				12.4.2.4 Carbon-based Nanomaterials (CNTs, Graphene Sheets, etc.)
				12.4.2.4 Carbon-based Nanomaterials (CNTs, Graphene Sheets, etc.)
			12.4.3 Electroluminescent Nanomaterials
				12.4.3.1 Cadmium-based QDs (CdS, CdSe, CdTe)
				12.4.3.2 Nanocomposites with Cadmium- or Zinc-based QDs (ZnS, CdS, CdSe, CdTe)
				12.4.3.3 TiO2 Nanocrystals and Nanocomposites
				12.4.3.4 Carbon-based Quantum Dots
				12.4.3.5 Carbon Nitride-based Quantum Dots
				12.4.3.6 Polymer Dots
				12.4.3.7 More Complex QDs
		12.5 New Trends
			12.5.1 Bipolar Electrode (BPE) Systems
			12.5.2 Ratiometric Systems
		12.6 Conclusion
		Abbreviations
		References
9781788015776-00386.pdf
	Chapter 13: DNA-based ECL Assays
		13.1 Introduction
		13.2 General Sensing Strategies in DNA-based ECL Assays
		13.2 General Sensing Strategies in DNA-based ECL Assays
			13.2.1 Recognition Chemistries
			13.2.2 Signalling Approaches and Signal Amplification Strategies
			13.2.2 Signalling Approaches and Signal Amplification Strategies
				13.2.2.1 Label-based and Label-free Signalling Approaches
				13.2.2.2 Signal Amplification Strategies
					13.2.2.2.1 Nanomaterials-based Signal Amplification
					13.2.2.2.2 Nucleic Acid-based Amplification
						13.2.2.2.2.1 RCA-based Signal Amplification
						13.2.2.2.2.2 HCR-based Signal Amplification
					13.2.2.2.3 DNA Nanostructure-based Signal Amplification
						13.2.2.2.3.1 DNA Tetrahedron-based Signal Amplification
						13.2.2.2.3.2 DNA Machine-based Signal Amplification
			13.2.3 General Biosensing Formats of DNA-based ECL Assays
				13.2.3.1 Signal-on Sensing Format
					13.2.3.1.1 Signal-On Induced by Introduction of Luminophores
					13.2.3.1.2 Signal-on Induced by Release of the Quenchers
					13.2.3.1.3 Signal-on Regulated by ECL Coreaction
				13.2.3.2 Signal-off Sensing Format
					13.2.3.2.1 Signal-off Induced by ECL Quencher
					13.2.3.2.2 Signal-off Induced by Release of Luminophores
					13.2.3.2.3 Signal-off Induced by Consumption of Coreactants
				13.2.3.3 Electrochemiluminescence Resonance Energy Transfer (ECL-RET)
		13.3 Analytical Applications
			13.3.1 Detection of Nucleic acids
				13.3.1.1 Detection of DNA
				13.3.1.2 Detection of miRNA
				13.3.1.3 Detection of Proteins
				13.3.1.4 Detection of Enzymes and Enzyme activities
				13.3.1.5 Detection of Small Molecules
				13.3.1.6 Detection of Metal Ions
				13.3.1.7 Detection of Cancer Cells
				13.3.1.8 ECL Imaging
		13.4 Conclusion and Perspectives
		References
9781788015776-00416.pdf
	Chapter 14: Microfluidic ECL and Voltammetric Arrays for Metabolite-related DNA Damage
		14.1 Introduction
		14.2 A Brief History of DNA Damage Assays
		14.3 Microfluidic Arrays for DNA Adduction
		14.4 ECL and Electrochemical Arrays to Measure DNA Oxidation
		14.5 Microfluidic Arrays to Measure both DNA Adduction and Oxidation
		14.6 Summary and Outlook for the Future
		Acknowledgments
		References
9781788015776-00443.pdf
	Chapter 15: Automated Immunoassays for the Detection of Biomarkers in Body Fluids
		15.1 Introduction
		15.2 Instrumentation
			15.2.1 Components of a cobas e Immunoassay Analyzer
			15.2.2 Elecsys® Measuring Cell
			15.2.3 Detection Cycle
		15.3 ECL Mechanism
		15.4 Additives
			15.4.1 Carbonic Acid Amides
			15.4.2 Boric Acid
			15.4.3 Combination of Propanamide and Boric Acid
		15.5 Label Chemistry
			15.5.1 Ruthenium Labels
			15.5.2 Iridium Labels
			15.5.3 Conjugation Methods
		15.6 Elecsys® Immunoassays
			15.6.1 Sandwich Assays
			15.6.2 Double Antigen Sandwich Assays
			15.6.3 Competitive Assays
			15.6.4 Back-titration Binding Assays
			15.6.5 ç-Capture Assays
			15.6.6 Combined Assays
			15.6.7 Elecsys® Assay Menu
		15.7 Conclusions
		References
9781788015776-00471.pdf
	Chapter 16: Electrochemiluminescence Imaging
		16.1 Introduction
			16.1.1 Apparatus of ECL Imaging
		16.2 Applications of ECL Imaging for Bioassays
			16.2.1 Immunoassays
			16.2.2 Genotoxicity Screening
			16.2.3 Enzyme-based Bioanalysis
		16.3 ECL Imaging of Single Objects
			16.3.1 Single Cells
			16.3.2 Single Particles
		16.4 Bipolar Electrodes for ECL Imaging
		16.5 Conclusion
		References




نظرات کاربران