دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: 1 نویسندگان: Herbert Amann. Joachim Escher سری: ISBN (شابک) : 9783764374723, 3764374721 ناشر: Birkhäuser Basel سال نشر: 2008 تعداد صفحات: 409 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Analysis II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جلد دوم این مقدمه در تحلیل به نظریه ادغام توابع یک متغیر، حساب دیفرانسیل چند بعدی و نظریه منحنی ها و انتگرال های خط می پردازد. توسعه مدرن و روشن که در جلد اول (3-7643-7153-6) آغاز شده است، ادامه دارد. به این ترتیب یک مبنای پایدار ایجاد خواهد شد که اجازه می دهد تا با برنامه های کاربردی جالبی که گاهی اوقات به طور قابل توجهی فراتر از مطالبی است که در کتاب های درسی سنتی ارائه شده است، مقابله کنیم. به عنوان مثال، این امر در مورد اکتشاف عملگرهای Nemytskii که امکان ورود شفاف به حساب تغییرات و استخراج معادلات اویلر-لاگرانژ را فراهم می کند، صدق می کند. مثال دیگر ارائه نظریه محلی زیرمنیفولدهای Rn است.
The second volume of this introduction into analysis deals with the integration theory of functions of one variable, the multidimensional differential calculus and the theory of curves and line integrals. The modern and clear development that started in Volume I (3-7643-7153-6) continues. In this way a sustainable basis will be created which allows to deal with interesting applications that sometimes go considerably beyond the material that is represented in traditional textbooks. This applies, for instance, to the exploration of Nemytskii operators which enable a transparent introduction into the calculus of variations and the derivation of the Euler-Lagrange equations. Another example is the presentation of the local theory of submanifolds of Rn.
Sachverzeichnis......Page 0
Foreword......Page 5
Foreword to the English translation......Page 6
Chapter VI: Integral calculus in one variable......Page 7
Chapter VII: Multivariable differential calculus......Page 9
Chapter VIII: Line integrals......Page 11
Index......Page 12
Chapter VI: Integral calculus in one variable......Page 13
Staircase and jump continuous functions......Page 16
A characterization of jump continuous functions......Page 18
The Banach space of jump continuous functions......Page 19
Exercises......Page 20
The extension of uniformly continuous functions......Page 22
Bounded linear operators......Page 24
The continuous extension of bounded linear operators......Page 27
Exercises......Page 28
The integral of staircase functions......Page 29
The integral of jump continuous functions......Page 31
Riemann sums......Page 32
Exercises......Page 35
Integration of sequences of functions......Page 37
The oriented integral......Page 38
Positivity and monotony of integrals......Page 39
The first fundamental theorem of calculus......Page 42
The indefinite integral......Page 44
The mean value theorem for integrals......Page 45
Exercises......Page 46
Variable substitution......Page 50
Integration by parts......Page 52
The integrals of rational functions......Page 55
Exercises......Page 60
The Bernoulli numbers......Page 62
Recursion formulas......Page 64
The Bernoulli polynomials......Page 65
The Euler–Maclaurin sum formula......Page 66
Power sums......Page 68
Asymptotic equivalence......Page 69
The Riemann ζ function......Page 71
The trapezoid rule......Page 76
Exercises......Page 77
The L2 scalar product......Page 79
Approximating in the quadratic mean......Page 81
Orthonormal systems......Page 83
Integrating periodic functions......Page 84
Fourier coefficients......Page 85
Classical Fourier series......Page 86
Bessel’s inequality......Page 89
Complete orthonormal systems......Page 91
Piecewise continuously differentiable functions......Page 94
Exercises......Page 99
Improper integrals......Page 102
The integral comparison test for series......Page 105
Absolutely convergent integrals......Page 106
The majorant criterion......Page 107
Exercises......Page 109
Euler’s integral representation......Page 110
The gamma function on C\\(-N)......Page 111
Gauss’s representation formula......Page 112
The reflection formula......Page 116
The logarithmic convexity of the gamma function......Page 117
Stirling’s formula......Page 120
The Euler beta integral......Page 122
Exercises......Page 124
Chapter VII: Multivariable differential calculus......Page 126
The completeness of L(E,F)......Page 129
Finite-dimensional Banach spaces......Page 130
Matrix representations......Page 133
The exponential map......Page 136
Linear differential equations......Page 139
Gronwall’s lemma......Page 140
The variation of constants formula......Page 142
Determinants and eigenvalues......Page 144
Fundamental matrices......Page 147
Second order linear differential equations......Page 151
Exercises......Page 156
The definition......Page 160
The derivative......Page 161
Directional derivatives......Page 163
Partial derivatives......Page 164
The Jacobi matrix......Page 166
A differentiability criterion......Page 167
The Riesz representation theorem......Page 169
The gradient......Page 170
Complex differentiability......Page 173
Exercises......Page 175
The chain rule......Page 177
The mean value theorem......Page 180
Necessary condition for local extrema......Page 182
Exercises......Page 183
Continuous multilinear maps......Page 184
The canonical isomorphism......Page 186
Symmetric multilinear maps......Page 187
The derivative of multilinear maps......Page 188
Exercises......Page 190
Definitions......Page 191
Higher order partial derivatives......Page 194
Taylor’s formula......Page 196
Functions of m variables......Page 197
Sufficient criterion for local extrema......Page 199
Exercises......Page 202
The continuity of Nemytskii operators......Page 206
The differentiability of Nemytskii operators......Page 208
The differentiability of parameter-dependent integrals......Page 211
Variational problems......Page 213
The Euler–Lagrange equation......Page 215
Classical mechanics......Page 218
Exercises......Page 220
The derivative of the inverse of linear maps......Page 223
The inverse function theorem......Page 225
Diffeomorphisms......Page 228
The solvability of nonlinear systems of equations......Page 229
Exercises......Page 230
Differentiable maps on product spaces......Page 232
The implicit function theorem......Page 234
Ordinary differential equations......Page 237
Separation of variables......Page 240
Lipschitz continuity and uniqueness......Page 244
The Picard–Lindelöf theorem......Page 246
Exercises......Page 251
Submanifolds of Rn......Page 253
The regular value theorem......Page 254
The immersion theorem......Page 255
Embeddings......Page 258
Local charts and parametrizations......Page 263
Change of charts......Page 266
Exercises......Page 267
The tangential in Rn......Page 271
The tangential space......Page 272
Characterization of the tangential space......Page 276
Differentiable maps......Page 277
The differential and the gradient......Page 280
Normals......Page 282
Constrained extrema......Page 283
Applications of Lagrange multipliers......Page 284
Exercises......Page 288
Chapter VIII: Line integrals......Page 290
The total variation......Page 292
Rectifiable paths......Page 293
Differentiable curves......Page 295
Rectifiable curves......Page 297
Exercises......Page 300
Unit tangent vectors......Page 303
Parametrization by arc length......Page 304
Oriented bases......Page 305
The Frenet n-frame......Page 306
Curvature of plane curves......Page 309
Instantaneous circles along curves......Page 311
The vector product......Page 313
The curvature and torsion of space curves......Page 314
Exercises......Page 315
Vector fields and Pfaff forms......Page 319
The canonical basis......Page 321
Exact forms and gradient fields......Page 323
The Poincaré lemma......Page 325
Dual operators......Page 327
Transformation rules......Page 328
Modules......Page 332
Exercises......Page 334
The definition......Page 337
Elementary properties......Page 339
The fundamental theorem of line integrals......Page 341
Simply connected sets......Page 343
The homotopy invariance of line integrals......Page 344
Exercises......Page 347
Complex line integrals......Page 350
Holomorphism......Page 353
The Cauchy integral theorem......Page 354
The orientation of circles......Page 355
The Cauchy integral formula......Page 356
Analytic functions......Page 357
Liouville’s theorem......Page 359
The Fresnel integral......Page 360
The maximum principle......Page 361
Harmonic functions......Page 362
Goursat’s theorem......Page 364
Exercises......Page 367
The Laurent expansion......Page 371
Removable singularities......Page 375
Isolated singularities......Page 376
Simple poles......Page 379
The winding number......Page 381
The continuity of the winding number......Page 385
The generalized Cauchy integral theorem......Page 387
The residue theorem......Page 389
Fourier integrals......Page 390
Exercises......Page 394
References......Page 397
Index......Page 399