دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ترمودینامیک و مکانیک آماری ویرایش: نویسندگان: Daniel V. Schroeder سری: ISBN (شابک) : 9781292026213 ناشر: Addison - Wesley سال نشر: 2000 تعداد صفحات: 435 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 47 مگابایت
در صورت تبدیل فایل کتاب An Introduction to Thermal Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر فیزیک حرارتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن درمان متعادل و منظمی از ترمودینامیک و مکانیک آماری ارائه میکند و فیزیک حرارتی را برای هر کسی که یک سال فیزیک مقدماتی مبتنی بر حساب دیفرانسیل و انتگرال را به پایان رسانده است جالب و قابل دسترس میسازد. بخش اول مفاهیم اساسی ترمودینامیک و مکانیک آماری را از دیدگاهی یکپارچه معرفی میکند و مفاهیم را در تعدادی مثال توضیحی به کار میبرد. بخشهای II و III کاربردهای بیشتر ترمودینامیک کلاسیک و مکانیک آماری را بررسی میکنند. در کل، تاکید بر برنامه های کاربردی در دنیای واقعی است. این آپلود از نظر کیفیت بهتر از سایر آپلودهای pdf این کتاب است.
This text provides a balanced, well-organized treatment of thermodynamics and statistical mechanics, making thermal physics interesting and accessible to anyone who has completed a year of calculus-based introductory physics. Part I introduces essential concepts of thermodynamics and statistical mechanics from a unified view, applying concepts in a select number of illustrative examples. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications. This upload is better in quality than the other .pdf uploads of this book.
Preface Part I: Fundamentals Chapter 1: Energy in Thermal Physics 1.1 Thermal Equilibrium 1.2 The Ideal Gas Microscopic Model of an Ideal Gas 1.3 Equipartition of Energy 1.4 Heat and Work 1.5 Compression Work Compression of an Ideal Gas [problems] 1.6 Heat Capacities Latent Heat; Enthalpy 1.7 Rates of Processes Heat Conduction; Conductivity of an Ideal Gas; Viscosity; Diffusion Chapter 2: The Second Law 2.1 Two-State Systems The Two-State Paramagnet 2.2 The Einstein Model of a Solid 2.3 Interacting Systems 2.4 Large Systems Very Large Numbers; Stirling's Approximation; Multiplicity of a Large Einstein Solid; Sharpness of the Multiplicity Function 2.5 The Ideal Gas Multiplicity of a Monatomic Ideal Gas; Interacting Ideal Gases 2.6 Entropy Entropy of an Ideal Gas; Entropy of Mixing; Reversible and Irreversible Processes Chapter 3: Interactions and Implications 3.1 Temperature A Silly Analogy; Real-World Examples 3.2 Entropy and Heat Predicting Heat Capacities; Measuring Entropies; The Macroscopic View of Entropy 3.3 Paramagnetism Notation and Microscopic Physics; Numerical Solution; Analytic Solution 3.4 Mechanical Equilibrium and Pressure The Thermodynamic Identity; Entropy and Heat Revisited 3.5 Diffusive Equilibrium and Chemical Potential 3.6 Summary and a Look Ahead Part II: Thermodynamics Chapter 4: Engines and Refrigerators 4.1 Heat Engines The Carnot Cycle 4.2 Refrigerators 4.3 Real Heat Engines Internal Combustion Engines; The Steam Engine 4.4 Real Refrigerators The Throttling Process; Liquefaction of Gases; Toward Absolute Zero Chapter 5: Free Energy and Chemical Thermodynamics 5.1 Free Energy as Available Work Electrolysis, Fuel Cells, and Batteries; Thermodynamic Identities 5.2 Free Energy as a Force toward Equilibrium Extensive and Intensive Quantities; Gibbs Free Energy and Chemical Potential 5.3 Phase Transformations of Pure Substances Diamonds and Graphite; The Clausius-Clapeyron Relation; The van der Waals Model 5.4 Phase Transformations of Mixtures Free Energy of a Mixture; Phase Changes of a Miscible Mixture; Phase Changes of a Eutectic System 5.5 Dilute Solutions Solvent and Solute Chemical Potentials; Osmotic Pressure; Boiling and Freezing Points 5.6 Chemical Equilibrium Nitrogen Fixation; Dissociation of Water; Oxygen Dissolving in Water; Ionization of Hydrogen Part III: Statistical Mechanics Chapter 6: Boltzmann Statistics 6.1 The Boltzmann Factor The Partition Function; Thermal Excitation of Atoms 6.2 Average Values Paramagnetism; Rotation of Diatomic Molecules 6.3 The Equipartition Theorem 6.4 The Maxwell Speed Distribution 6.5 Partition Functions and Free Energy 6.6 Partition Functions for Composite Systems 6.7 Ideal Gas Revisited The Partition Function; Predictions Chapter 7: Quantum Statistics 7.1 The Gibbs Factor An Example: Carbon Monoxide Poisoning 7.2 Bosons and Fermions The Distribution Functions 7.3 Degenerate Fermi Gases Zero Temperature; Small Nonzero Temperatures; The Density of States; The Sommerfeld Expansion 7.4 Blackbody Radiation The Ultraviolet Catastrophe; The Planck Distribution; Photons; Summing over Modes; The Planck Spectrum; Total Energy; Entropy of a Photon Gas; The Cosmic Background Radiation; Photons Escaping through a Hole; Radiation from Other Objects; The Sun and the Earth 7.5 Debye Theory of Solids 7.6 Bose-Einstein Condensation Real-World Examples; Why Does it Happen? Chapter 8: Systems of Interacting Particles 8.1 Weakly Interacting Gases The Partition Function; The Cluster Expansion; The Second Virial Coefficient 8.2 The Ising Model of a Ferromagnet Exact Solution in One Dimension; The Mean Field Approximation; Monte Carlo Simulation * * * Appendix A: Elements of Quantum Mechanics A.1 Evidence for Wave-Particle Duality The Photoelectric Effect; Electron Diffraction A.2 Wavefunctions The Uncertainty Principle; Linearly Independent Wavefunctions A.3 Definite-Energy Wavefunctions The Particle in a Box; The Harmonic Oscillator; The Hydrogen Atom A.4 Angular Momentum Rotating Molecules; Spin A.5 Systems of Many Particles A.6 Quantum Field Theory Appendix B: Mathematical Results B.1 Gaussian Integrals B.2 The Gamma Function B.3 Stirling's Approximation B.4 Area of a d-Dimensional Hypersphere B.5 Integrals of Quantum Statistics Suggested Reading Reference Data Index Further topics covered in the problems include: Thermal expansion coefficients The exponential atmosphere The virial expansion for nonideal gases Gas escaping through a hole (effusion) Speed of sound in an ideal gas Convection in earth's atmosphere (adiabatic lapse rate) Climbing Mt. Ogden Temperature and heat capacity of a star One-dimensional random walk and diffusion Entropy and temperature of a black hole Thermodynamics of computing Heat capacity of an Einstein solid A simple model of a rubber band Chemical potential in a gravitational field Thermal pollution Maximizing the power of a Carnot engine Heat pump Absorption refrigerator Carnot's theorem Efficiency of the Otto and Diesel cycles The Stirling engine Efficiency of steam and refrigeration cycles Limits on magnetic cooling and laser cooling Glucose metabolism and muscle contraction Maxwell relations and their applications Magnetic work and magnetic analogues of H and G The grand free energy Efficiency of an ice engine The helium-3 phase diagram The calcite-aragonite phase diagram The aluminosilicate phase diagram Equilibrium in a solid-solid reaction Integrating the Clausius-Clapeyron equation Condensation and cloud formation Wet adiabatic lapse rate Nucleation of water droplets Magnetic analogue of the Clausius-Clapeyron relation Helmholtz free energy of a van der Waals fluid Critical exponents of a van der Waals fluid A simple model of mixing energy Purifying nitrogen and oxygen Phase diagrams for systems with azeotropes Phase diagram for a peritectic system Desalination by reverse osmosis Temperature dependence of equilibrium constants Acid rain, with and without sulfates Rotational excitations of interstellar CN molecules Protons and neutrons in the early universe Orthohydrogen and parahydrogen at low temperature Molecules escaping from an atmosphere Relativistic ideal gas Cooperative binding in hemoglobin Relativistic electron gas White dwarfs and neutron stars Two-dimensional Fermi gas Fermi gas at intermediate temperatures Semiconductors Electrons, positrons, and neutrinos in the early universe Efficiency of an incandescent light Hawking radiation from black holes Measuring stellar radii The greenhouse effect Debye theory of a two-dimensional solid Magnons Bose-Einstein condensation of rubidium-87 vapor Superfluid helium Heat capacity of a Bose gas Bose-Einstein condensation in a harmonic trap Second virial coefficient of an ideal quantum gas Second virial coefficient of nitrogen Energy and heat capacity of a weakly interacting gas Ising model with an external magnetic field Lattice gas interpretation of the Ising model Critical exponents of the Ising model Heat capacity and magnetization of a two-dimensional Ising model Block spin transformations of the Ising model The cosmological constant