دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نظریه شماره ویرایش: نویسندگان: Ralph G. Archibald سری: Merrill Mathematics Series ISBN (شابک) : 0675093511 ناشر: Charles E. Merrlll Publishing Co. سال نشر: 1970 تعداد صفحات: 319 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب An Introduction to the Theory of Numbers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درآمدی بر نظریه اعداد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Preface Contents 1. Introduction 1-1 Nature of the Subject 1-2 Some Questions Considered 1-3 Problems 2. Divisibility 2-1 Introduction 2-2 Sundry Definitions 2-3 Elementary Theorems 2-4 Some Fundamental Principles 2-5 Basic Theorem 2-6 Mathematical Induction 2-7 Problems 2-8 Scales of Notation 2-9 Problems 2-10 Common Divisors 2-11 Euclid’s Algorithm 2-12 Linear Diophantine Equations 2-13 Problems 2-14 Greatest Common Divisor and Least Common Multiple 2-15 Number of Primes Infinite 2-16 Sieve of Eratosthenes 2-17 Unique Factorization 2-18 Problems 3. Congruences 3-1 Residue Classes 3-2 Congruence Symbol 3-3 Properties of Congruences 3-4 Problems 3-5 Euler\'s phi-Function 3-6 Fermat’s Theorem and Euler\'s Generalization 3-7 Pseudoprimes 3-8 Problems 3-9 Linear Congruences and Their Solution 3-10 Simple Continued Fractions 3-11 Wilson\'s Theorem 3-12 The Chinese Remainder Theorem 3-13 Problems 3-14 Identical and Conditional Congruences 3-15 Equivalent Congruences 3-16 Division of Polynomials, modulo m 3-17 Problems 3-18 Number of Solutions of a Congruence 3-19 Number of Solutions of Special Congruences 3-20 Number of Solutions of a Binomial Quadratic Congruence 3-21 Problems 3-22 Solution of the Congruence f(x) equiv 0 (mod m) 3-23 Polynomials Representing Primes 3-24 Problems 4. Some Significant Functions in the Theory of Numbers 4-1 The Greatest Integer Function 4-2 Problems 4-3 Generalization of Euler’s phi-Function 4-4 Functions tau(n) and sigma(n) 4-5 Problems 4-6 Perfect Numbers 4-7 Möbius mu-Function 4-8 Liouville\'s Function lambda(n) 4-9 Problems 4-10 Recurrence Formulae 4-11 Fibonacci’s and Lucas’ Sequences 4-12 Problems 5. Primitive Roots and lndices 5-1 Belonging to an Exponent 5-2 Problems 5-3 Primitive Roots 5-4 Obtaining Primitive Roots 5-5 Sum of Numbers Belonging to an Exponent 5-6 Further Consideration of Primitive Roots of p^n 5-7 Problems 5-8 Indices 5-9 Problems 6. Quadratic Congruences 6-1 A Quadratic Congruence 6-2 Quadratic Residue and Quadratic Nonresidue 6-3 Problems 6-4 Euler\'s Criterion 6-5 Legendre’s Symbol 6-6 The Quadratic Reciprocity Law 6-7 Problems 6-8 Another Proof of the Quadratic Reciprocity Law 6-9 The Jacobi Symbol 6-10 Generalized Quadratic Reciprocity Law 6-11 Problems 7. Elementary Considerations on the Distribution of Primes and Composites 7-1 Introduction 7-2 The O-notation 7-3 Problems 7-4 Bertrand\'s Postulate 7-5 Problems 7-6 Bounds for pi(x) 7-7 Remarks on the Prime Number Theorem 7-8 Primes in Arithmetical Progressions 7-9 Highly Composite Numbers 7-10 Relatively Highly Composite Numbers 7-11 Problems 8. Continued Fractions 8-1 Introduction 8-2 Finite Continued Fractions 8-3 Convergents and Their Limits 8-4 Problems 8-5 Representation of Irrational Numbers 8-6 Approximation by Rational Numbers 8-7 Problems 8-8 Quadratic Irrational Numbers 8-9 Periodic Continued Fractions 8-10 Problems 8-11 Pell\'s Equation 8-12 Problems 8-13 Farey Sequences 8-14 Problems 9. Certain Diophantine Equations and Sums of Squares 9-1 Introductory Remarks 9-2 The Pythagorean Equation 9-3 The Diophantine Equation x^2 + 2y^2 = z^2 9-4 Problems 9-5 Some Fourth Degree Diophantine Equations 9-6 Problems 9-7 Solution of the Equations X^4 - 2Y^4 = plusminus Z^2 9-8 Sum of Two Squares 9-9 Sum of Three Squares 9-10 Problems 9-11 Sum of Four Squares 9-12 Remarks on Waring\'s Problem 9-13 Problems Notes Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Bibliography Appendix Index