ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب An Introduction to Probability Theory and Its Applications, Vol. 2

دانلود کتاب مقدمه ای بر تئوری احتمال و کاربردهای آن ، جلد. 2

An Introduction to Probability Theory and Its Applications, Vol. 2

مشخصات کتاب

An Introduction to Probability Theory and Its Applications, Vol. 2

دسته بندی: احتمال
ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0471257095, 9780471257097 
ناشر: Wiley 
سال نشر: 1971 
تعداد صفحات: 683 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب An Introduction to Probability Theory and Its Applications, Vol. 2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر تئوری احتمال و کاربردهای آن ، جلد. 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای بر تئوری احتمال و کاربردهای آن ، جلد. 2

تغییرات عمده در این نسخه شامل جایگزینی استدلال‌های احتمالی برای مصنوعات ترکیبی، و افزودن بخش‌های جدید در فرآیندهای انشعاب، زنجیره‌های مارکوف و قضیه De Moivre-Laplace است.


توضیحاتی درمورد کتاب به خارجی

Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem.



فهرست مطالب

Title Page
Preface to the First Edition
Acknowledgments
Introduction
Abbreviations and Conventions
Table of Contents
CHAPTER I  - THE EXPONENTIAL AND THE UNIFORM DENSITIES
	1. Introduction
	2. Densities, Convolutions
	3. The Exponential Density
	4. Waiting Time Paradoxes. The Poisson Process
	5. The Persistence of Bad Luck
	6. Waiting Times and Order Statistics
	7. The Uniform Distribution
	8. Random Splittings
	9. Convolutions and Covering Theorems
	10. Random Directions
	11. The Use of Lebesgue Measure
	12. Empirical Distributions
	13. Problems for Solution
CHAPTER II - SPECIAL DENSITIES. RANDOMIZATION
	1. Notations and Conventions
	2. Gamma Distributions
	*3. Related Distributions of Statistics
	4. Some Common Densities
	5. Randomization and Mixtures
	6. Discrete Distributions
	7. Bessel Functions and Random Walks
	8. Distributions on a Circle
	9. Problems for Solution.
CHAPTER III -DENSITIES IN HIGHER DIMENSIONS. NORMAL DENSITIES AND PROCESSES
	1. Densities
	2. Conditional Distributions
	3. Return to the Exponential and the Uniform Distributions
	*4. A Characterization of the Normal Distribution
	5. Matrix Notation. The Covariance Matrix
	6. Normal Densities and Distributions
	*7. Stationary Normal Processes
	8. Markovian Normal Densities
	9. Problems for Solution
CHAPTER IV - PROBABILITY MEASURES AND SPACES
	1. Baire Functions
	2. Interval Functions and Integrals in R[r]
	3. sigma-Algebras. Measurability
	4. Probability Spaces. Random Variables
	5. The Extension Theorem
	6. Product Spaces. Sequences of Independent Variables
	7. Null Sets. Completion
CHAPTER V - PROBABILITY DISTRIBUTIONS IN R[r]
	1. Distributions and Expectations
	2. Preliminaries
	3. Densities
	*3a. Singular Distributions
	4. Convolutions
	5. Symmetrization
	6. Integration by Parts. Existence of Moments
	7. Chebyshev\'s -Inequality
	8. Further Inequalities. Convex Functions
	9. Simple Conditional Distributions. Mixtures
	*10. Conditional Distributions
	*11. Conditional Expectations
	12. Problems for Solution
CHAPTER VI - A SURVEY OF SOME IMPORTANT DISTRIBUTIONS AND PROCESSES
	1. Stable Distributions in R[1]
	2. Examples
	3. Infinitely Divisible Distributions in R[1]
	4. Processes with Independent Increments
	*5. Ruin Problems in Compound Poisson Processes
	6. Renewal Processes
	7. Examples and Problems
	8. Raridom Walks
	9. The Queuing Process
	10.  Persistent and Transient Random Walks
	11. General Markov Chains
	*12. Martingales
	13. Problems for Solution
CHAPTER VII - LAWS OF LARGE NUMBERS. APPLICATIONS IN ANALYSIS
	1. Main Lemma and Notations
	2. Bernstein Polynomials. Absolutely Monotone Functions
	3. Moment Problems
	*4. Application to Exchangeable Variables
	*5. Generalized Taylor Formula and Semi-Groups
	6. Inversion Formulas for Laplace Transforms
	*7. Laws of Large Numbers for Identically Distributed Variables
	*8. Strong Laws
	*9. Generalization to Martingales
	10. Problems for Solution
CHAPTER VIII - THE BASIC LIMIT THEOREMS
	1. Convergence of Measures
	2. Special Properties
	3. Distributions as Operators
	4. The Central Limit Theorem
	*5. Infinite Convolutions
	6. Selection Theorems
	*7. Ergodic Theorems for Markov Chains
	8. Regular Variation
	*9. Asymptotic Properties of Regularly Varying Functions
	10. Problems for Solution
CHAPTER IX - INFINITELY DIVISIBLE. DISTRIBUTIONS AND SEMI-GROUPS
	1. Orientation
	2. Convolution Semi-Groups
	3. Preparatory Lemmas
	4. Finite Variances
	5. The Main Theorems
	* 5a. Discontinuous Semi-groups
	6. Example: Stable Semi-Groups
	7. Triangular Arrays with Identical Distributions
	8. Domains of Attraction
	9. Variable Distributions. The Three-Series Theorem
	10. Problems for Solution
CHAPTER X - MARKOV PROCESSES AND SEMI-GROUPS
	1. The Pseudo-Poisson Type
	2. A Variant: Linear Increments
	3. Jump Processes
	4. Diffusion Processes in R[1]
	5. The Forward Equation. Boundary Conditions
	6. Diffusion in Higher Dimensions
	7. Subordinated Processes
	8. Markov Processes and Semi-Groups
	9. The \"Exponential Formula\" of Semi-Group Theory
	10. Generators. The Backward Equation
CHAPTER XI - RENEWAL THEORY
	1. The Renewal Theorem
	2. Proof of the Renewal Theorem
	*3. Refinements
	4. Persistent Renewal Processes
	5. The Number N[i] of Renewal Epochs
	6. Terminating (Transient) Processes
	7. Diverse Applications
	8. Existence of Limits in Stochastic Processes
	*9. Renewal Theory on the Whole Line
	10. Problems for Solution
CHAPTER XII - RANDOM WALKS IN R[1]
	1. Basic Concepts and Notations
	2. Duality. Types of Random Walks
	3. Distribution of Ladder Heights. Wiener-Hopf Factorization
	3a. The Wiener-Hopf Integral Equation
	4. Examples
	5. Applications
	6. A Combinatorial Lemma
	7. Distribution of Ladder Epochs
	8. The Arc Sine Laws
	9. Miscellaneous Complements
	10. Problems for Solution
CHAPTER XIII - LAPLACE TRANSFORMS. TAUBERIAN THEOREMS. RESOLVENTS
	1. Definitions. The Continuity Theorem
	2. Elementary Properties
	3. Examples
	4. Completely Monotone Functions. Inversion Formulas
	5. Tauberian Theorems
	*6. Stable Distributions
	*7. Infinitely Divisible Distributions
	*8. Higher Dimensions
	9. Laplace Transforms for Semi-Groups
	10. The Hille-Yosida Theorem
	11. Problems for Solution
CHAPTER XIV - APPLICATIONS OF LAPLACE TRANSFORMS
	1. The Renewal Equation: Theory
	2. Renewal-Type Equations: Examples
	3. Limit Theorems Involving Arc Sine Distributions
	4. Busy Periods and Related Branching Processes
	5. Diffusion Processes
	6. Birth-and-Death Processes and Random Walks
	7. The Kolmogorov Differential Equations
	8. Example: The Pure Birth Process
	9. Calculation. of Ergodic Limits and of First-Passage Times
	10. Problems for Solution
CHAPTER XV - CHARACTERISTIC FUNCTIONS
	1. Definition. Basic Properties
	2. Special Distributions. Mixtures
	2a. Some Unexpected Phenomena
	3. Uniqueness. Inversion Formulas
	4. Regularity Properties
	5. The Central Limit Theorem for Equal Components
	6. The Lindeberg Conditions
	7. Characteristic Functions in Higher Dimensions
	*8. Two Characterizations\' of the Normal Distribution
	9. Problems for Solution
CHAPTERX VI* - EXPANSIONS RELATED TO THE CENTRAL LIMIT THEOREM
	I. Notations
	2. Expansions for Densities
	3. Smoothing
	4. Expansions for Distributions
	5. The Berry-Esseen Theorems
	6. Expansions in the Case of Varying Components
	7. Large Deviations
CHAPTER XVII - INFINITELY DIVISIBLE DISTRIBUTIONS
	1. Infinitely Divisible Distributions
	2. Canonical Forms. The Main Limit Theorem
	2a. Derivatives of Characteristic Func,tions
	3. Uniqueness. Inversion Formulas
	4. Special Properties
	5. Stable Distributions and Their Domains of Attraction
	*6. Stable Densities
	7. Triangular Arrays
	*8. The Class L
	*9. Partial Attraction. \"Universal Laws\"
	*10. Infinite Convolutions
	11. Higher Dimensions
	12. Problems for Solution
CHAPTER XVllI - APPLICATIONS OF FOURIER METHODS TO RANDOM WALKS
	1. The Basic Identity
	*2. Finite Intervals. Wald\'s Approximation
	3. The Wiener-Hopf Factorization
	4. Implications and Applications
	5. Two Deeper Theorems
	6. Criteria for Persistency
	7. Problems for Solution
CHAPTER XIX - HARMONIC ANALYSIS
	1. The Parseval Relation
	2. Positive Definite Functions
	3. Stationary Processes
	4. Fourier Series
	*5. The Poisson Summation Formula
	6. Positive Definite Sequences
	7. L[2] Theory
	8. Stochastic Processes and Integrals
	9. Problems for Solution
ANSWERS TO PROBLEMS
SOME BOOKS ON COGNATE SUBJECTS
INDEX




نظرات کاربران