ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب An introduction to fluid dynamics

دانلود کتاب مقدمه ای بر دینامیک سیال

An introduction to fluid dynamics

مشخصات کتاب

An introduction to fluid dynamics

ویرایش: reprint 
نویسندگان:   
سری: Cambridge mathematical library 
ISBN (شابک) : 9780521663960, 0521663962 
ناشر: Cambridge University Press 
سال نشر: 2005 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 مگابایت 

قیمت کتاب (تومان) : 39,000



کلمات کلیدی مربوط به کتاب مقدمه ای بر دینامیک سیال: سند دینامیک سیالات)، کتاب تمرین + کتاب کار (اسناد نوع)



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب An introduction to fluid dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر دینامیک سیال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای بر دینامیک سیال

متن کلاسیک پروفسور باتچلور در مورد دینامیک سیالات برای اولین بار در سال 1967 منتشر شد و هنوز یکی از مهمترین متون در این زمینه است. ارائه دقیق تئوری های زیربنایی سیالات، حتی در این روزهایی که قدرت کامپیوتر تقریباً نامحدود است، هنوز به موقع و قابل اجرا است. این چاپ مجدد باید تضمین کند که نسل جدیدی از دانشجویان فارغ التحصیل ظرافت ارائه پروفسور Batchelor را ببینند.


توضیحاتی درمورد کتاب به خارجی

First published in 1967, Professor Batchelor's classic text on fluid dynamics is still one of the foremost texts in the subject. The careful presentation of the underlying theories of fluids is still timely and applicable, even in these days of almost limitless computer power. This re-issue should ensure that a new generation of graduate students see the elegance of Professor Batchelor's presentation.



فهرست مطالب

Cover......Page 1
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 15
Conventions and Notation......Page 20
1.1 Solids, liquids and gases......Page 21
1.2 The continuum hypothesis......Page 24
1.3 Volume forces and surface forces acting on a fluid......Page 27
Representation of surface forces by the stress tensor......Page 29
The stress tensor in a fluid at rest......Page 32
1.4 Mechanical equilibrium of a fluid......Page 34
A body \'floating\' in fluid at rest......Page 36
Fluid at rest under gravity......Page 38
1.5 Classical thermodynamics......Page 40
1.6 Transport phenomena......Page 48
The linear relation between flux and the gradient of a scalar intensity......Page 50
The equations for diffusion and heat conduction in isotropic media at rest......Page 52
Molecular transport of momentum in a fluid......Page 56
1.7 The distinctive properties of gases......Page 57
A perfect gas in equilibrium......Page 58
Departures from the perfect-gas laws......Page 65
Transport coefficients in a perfect gas......Page 67
Other manifestations of departure from equilibrium of a perfect gas......Page 70
1.8 The distinctive properties of liquids......Page 73
Equilibrium properties......Page 75
Transport coefficients......Page 77
Surface tension......Page 80
Equilibrium shape of a boundary between two stationary fluids......Page 83
Transition relations at a material boundary......Page 88
2.1 Specification of the flow field......Page 91
Differentiation following the motion of the fluid......Page 92
2.2 Conservation of mass......Page 93
Use of a stream function to satisfy the mass-conservation equation......Page 95
2.3 Analysis of the relative motion near a point......Page 99
Simple shearing motion......Page 103
2.4 Expression for the velocity distribution with specified rate of expansion and vorticity......Page 104
2.5 Singularities in the rate of expansion. Sources and sinks......Page 108
2.6 The vorticity distribution......Page 112
Line vortices......Page 113
Sheet vortices......Page 116
2.7 Velocity distributions with zero rate of expansion and zero vorticity......Page 119
Conditions for [nabla]ø to be determined uniquely......Page 122
Irrotational solenoidal flow near a stagnation point......Page 125
The complex potential for irrotational solenoidai flow in two dimensions......Page 126
2.8 Irrotational solenoidal flow in doubly-connected regions of space......Page 128
Conditions for [nabla]ø to be determined uniquely......Page 132
Asymptotic expressions for u[sub(e)] and u[sub(v)]......Page 134
The behaviour of ø at large distances......Page 137
Conditions for [nabla]ø to be determined uniquely......Page 139
The expression of ø as a power series......Page 140
Irrotational solenoidai flow due to a rigid body in translational motion......Page 142
2.10 Two-dimensional flow fields extending to infinity......Page 144
Irrotational solenoidal flow due to a rigid body in translational motion......Page 148
3.1 Material integrals in a moving fluid......Page 151
Rates of change of material integrals......Page 153
Conservation laws for a fluid in motion......Page 155
3.2 The equation of motion......Page 157
Use of the momentum equation in integral form......Page 158
Equation of motion relative to moving axes......Page 159
Mechanical definition of pressure in a moving fluid......Page 161
The relation between deviatoric stress and rate-of-strain for a Newtonian fluid......Page 162
The Navier-Stokes equation......Page 167
Conditions on the velocity and stress at a material boundary......Page 168
3.4 Changes in the internal energy of a fluid in motion......Page 171
3.5 Bernoulli\'s theorem for steady flow of a frictionless non-conducting fluid......Page 176
Special forms of Bernoulli\'s theorem......Page 181
Constancy of H across a transition region in one-dimensional steady flow......Page 183
3.6 The complete set of equations governing fluid flow......Page 184
Isentropic flow......Page 185
Conditions for the velocity distribution to be approximately solenoidal......Page 187
3.7 Concluding remarks to chapters 1, 2 and 3......Page 191
4.1 Introduction......Page 194
Modification of the pressure to allow for the effect of the body force......Page 196
4.2 Steady unidirectional flow......Page 199
Poiseuille flow......Page 200
Two-dimensional flow......Page 202
A model of a paint-brush......Page 203
A remark on stability......Page 205
4.3 Unsteady unidirectional flow......Page 206
The smoothing-out of a discontinuity in velocity at a plane......Page 207
Plane boundary moved suddenly in a fluid at rest......Page 209
One rigid boundary moved suddenly and one held stationary......Page 210
Flow due to an oscillating plane boundary......Page 211
Starting flow in a pipe......Page 213
4.4 The Ekman layer at a boundary in a rotating fluid......Page 215
The layer at a free surface......Page 217
The layer at a rigid plane boundary......Page 219
4.5 Flow with circular streamlines......Page 221
4.6 The steady jet from a point source of momentum......Page 225
4.7 Dynamical similarity and the Reynolds number......Page 231
Other dimensionless parameters having dynamical significance......Page 235
4.8 Flow fields in which inertia forces are negligible......Page 236
Flow in slowly-varying channels......Page 237
Lubrication theory......Page 239
The Hele-Shaw cell......Page 242
Percolation through porous media......Page 243
Two-dimensional flow in a corner......Page 244
Uniqueness and minimum dissipation theorems......Page 247
4.9 Flow due to a moving body at small Reynolds number......Page 249
A rigid sphere......Page 250
A spherical drop of a different fluid......Page 255
A body of arbitrary shape......Page 258
4.10 Oseen\'s improvement of the equation for flow due to moving bodies at small Reynolds number......Page 260
A rigid sphere......Page 261
A rigid circular cylinder......Page 264
4.11 The viscosity of a dilute suspension of small particles......Page 266
The flow due to a sphere embedded in a pure straining motion......Page 268
The increased rate of dissipation in an incompressible suspension......Page 270
The effective expansion viscosity of a liquid containing gas bubbles......Page 273
4.12 Changes in the flow due to moving bodies as R increases from 1 to about 100......Page 275
5.1 Introduction......Page 284
5.2 Vorticity dynamics......Page 286
The Intensification of vorticity by extension of vortex-lines......Page 290
5.3 Kelvin\'s circulation theorem and vorticity laws for an inviscid fluid......Page 293
The persistence of irrotationality......Page 296
5.4 The source of vorticity in motions generated from rest......Page 297
(a) Flow along plane and circular walls with suction through the wall......Page 302
(b) Flow toward a \'stagnation points\' at a rigid boundary......Page 305
(c) Centrifugal flow due to a rotating disk......Page 310
5.6 Steady two-dimensional flow in a converging or diverging channel......Page 314
Purely convergent flow......Page 317
Purely divergent flow......Page 318
Solutions showing both outflow and inflow......Page 321
5.7 Boundary layers......Page 322
5.8 The boundary layer on a flat plate......Page 328
5.9 The effects of acceleration and deceleration of the external stream......Page 334
The similarity solution for an external stream velocity proportional to x[sup(m)]......Page 336
Calculation of the steady boundary layer on a body moving through fluid......Page 338
Growth of the boundary layer in initially irrotational flow......Page 341
5.10 Separation of the boundary layer......Page 345
5.11 The flow due to bodies moving steadily through fluid......Page 351
Flow without separation......Page 352
Flow with separation......Page 357
Narrow jets......Page 363
Free shear layers......Page 366
Wakes......Page 368
5.13 Oscillatory boundary layers......Page 373
The damping force on an oscillating body......Page 375
Steady streaming due to an oscillatory boundary layer......Page 378
Applications of the theory of steady streaming......Page 381
The boundary layer at a free surface......Page 384
The drag on a spherical gas bubble rising steadily through liquid......Page 412
The attenuation of gravity waves......Page 415
The force on a regular array of bodies in a stream......Page 417
The effect of a sudden enlargement of a pipe......Page 418
6.1 The role of the theory of flow of an inviscid fluid......Page 423
6.2 General properties of irrotational flow......Page 425
Integration of the equation of motion......Page 427
Expressions for the kinetic energy in terms of surface integrals......Page 428
Positions of a maximum of q and a minimum of p......Page 429
6.3 Steady flow: some applications of Bernoulli\'s theorem and the momentum theorem......Page 431
Efflux from a circular orifice in an open vessel......Page 432
Flow over a weir......Page 436
Jet of liquid impinging on a plane wall......Page 437
Irrotational flow which may be made steady by choice of rotating axes......Page 441
6.4 General features of irrotational flow due to a moving rigid body......Page 443
The velocity at large distances from the body......Page 444
The kinetic energy of the fluid......Page 447
The force on a body in translational motion......Page 449
The acceleration reaction......Page 452
6.5 Use of the complex potential for irrotational flow in two dimensions......Page 454
Flow fields obtained by special choice of the function w(z)......Page 455
Conformal transformation of the plane of flow......Page 458
Transformation of a boundary into an infinite straight line......Page 463
Transformation of a closed boundary into a circle......Page 465
The circle theorem......Page 467
6.6 Two-dimensional irrotational flow due to a moving cylinder with circulation......Page 468
A circular cylinder......Page 469
An elliptic cylinder in translational motion......Page 472
The force and moment on a cylinder in steady translational motion......Page 478
The practical requirements of aerofoils......Page 480
The generation of circulation round an aerofoil and the basis for Joukowski\'s hypothesis......Page 483
Aerofoils obtained by transformation of a circle......Page 486
Joukowski aerofoils......Page 489
Generalities......Page 494
A moving sphere......Page 497
Ellipsoids of revolution......Page 500
Body shapes obtained from source singularities on the axis of symmetry......Page 503
Semi-infinite bodies......Page 505
Slender bodies of revolution......Page 508
Slender bodies in two dimensions......Page 511
Thin aerofoils in two dimensions......Page 512
6.10 Impulsive motion of a fluid......Page 516
Impact of a body on a free surface of liquid......Page 518
6.11 Large gas bubbles in liquid......Page 519
A spherical-cap bubble rising through liquid under gravity......Page 520
A bubble rising in a vertical tube......Page 522
A spherical expanding bubble......Page 524
6.12 Cavitation in a liquid......Page 526
Examples of cavity formation in unsteady flow......Page 530
Collapse of a transient cavity......Page 531
Steady-state cavities......Page 536
6.13 Free-streamline theory, and steady jets and cavities......Page 538
Jet emerging from an orifice in two dimensions......Page 540
Two-dimensional flow past a flat plate with a cavity at ambient pressure......Page 542
Steady-state cavities attached to bodies held in a stream of liquid......Page 547
7.1 Introduction......Page 552
The self-induced movement of a line vortex......Page 554
The instability of a sheet vortex......Page 556
7.2 Flow in unbounded fluid at rest at infinity......Page 562
The resultant force impulse required to generate the motion......Page 563
The total kinetic energy of the fluid......Page 565
Flow with circular vortex-lines......Page 566
Vortex rings......Page 567
7.3 Two-dimensional flow in unbounded fluid at rest at infinity......Page 572
Integral invariants of the vorticity distribution......Page 573
Motion of a group of point vortices......Page 575
Steady motions......Page 577
7.4 Steady two-dimensional flow with vorticity throughout the fluid......Page 581
Uniform vorticity in a region bounded externally......Page 583
Fluid in rigid rotation at infinity......Page 584
Fluid in simple shearing motion at infinity......Page 586
7.5 Steady axisymmetric flow with swirl......Page 588
The effect of a change of cross-section of a tube on a stream of rotating fluid......Page 591
The effect of a change of external velocity on an isolated vortex......Page 595
The restoring effect of Coriolis forces......Page 600
Steady flow at small Rossby number......Page 602
Propagation of waves in a rotating fluid......Page 604
Flow due to a body moving along the axis of rotation......Page 609
7.7 Motion in a thin layer on a rotating sphere......Page 612
Geostrophic flow......Page 616
Flow over uneven ground......Page 618
Planetary waves......Page 622
General features of the flow past lifting bodies in three dimensions......Page 625
Wings of large aspect ratio, and \'lifting-line\' theory......Page 628
The trailing vortex system far downstream......Page 634
Highly swept wings......Page 636
(a) Dry air at a pressure of one atmosphere......Page 639
(c) Pure water......Page 640
(e) Surface tension between two fluids......Page 642
2 Expressions for some common vector differential quantities in orthogonal curvilinear co-ordinate systems......Page 643
Publications referred to in the text......Page 649
C......Page 654
E......Page 655
I......Page 656
P......Page 657
S......Page 658
V......Page 659
Z......Page 660
Plates......Page 385




نظرات کاربران