دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Steven M. LaValle, Jason M. O’Kane, Michael Otte, Dorsa Sadigh, Pratap Tokekar سری: Springer Proceedings in Advanced Robotics, 25 ISBN (شابک) : 3031210891, 9783031210891 ناشر: Springer سال نشر: 2022 تعداد صفحات: 572 [573] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 44 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Algorithmic Foundations of Robotics XV: Proceedings of the Fifteenth Workshop on the Algorithmic Foundations of Robotics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی الگوریتمی رباتیک پانزدهم: مجموعه مقالات پانزدهمین کارگاه آموزشی مبانی الگوریتمی رباتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب شامل تحقیقات مهم اخیر در مورد الگوریتم های رباتیک است. توسط کارشناسان برجسته در این زمینه نوشته شده است. پانزدهمین کارگاه آموزشی مبانی الگوریتمی رباتیک (WAFR) در تاریخ 22 تا 24 ژوئن 2022 در دانشگاه مریلند، کالج پارک، مریلند برگزار شد. هر فصل نشان دهنده یک پیشرفت هیجان انگیز پیشرفته در الگوریتم های رباتیک است که در پانزدهمین تجسم WAFR ارائه شد. فصلهای مختلف ایدههایی را از زمینههای مختلف ترکیب میکنند، برنامهریزی را شامل میشود و ترکیب میکند (برای وظایف، مسیرها، حرکت، ناوبری، پوشش و گشت)، هندسه محاسباتی و توپولوژی، نظریه کنترل، یادگیری ماشین، روشهای رسمی، نظریه بازی، نظریه اطلاعات. ، و علوم کامپیوتر نظری. بسیاری از این مقالات به بررسی مشکلات جدید و جالب و انواع مسئله می پردازند که شامل تعامل انسان و ربات، برنامه ریزی و استدلال در شرایط عدم قطعیت، محیط های پویا، تصمیم گیری توزیع شده، هماهنگی چند عاملی، و ناهمگنی است.
This book includes significant recent research on robotic algorithms. It has been written by leading experts in the field. The 15th Workshop on the Algorithmic Foundations of Robotics (WAFR) was held on June 22–24, 2022, at the University of Maryland, College Park, Maryland. Each chapter represents an exciting state-of-the-art development in robotic algorithms that was presented at this 15th incarnation of WAFR. Different chapters combine ideas from a wide variety of fields, spanning and combining planning (for tasks, paths, motion, navigation, coverage, and patrol), computational geometry and topology, control theory, machine learning, formal methods, game theory, information theory, and theoretical computer science. Many of these papers explore new and interesting problems and problem variants that include human–robot interaction, planning and reasoning under uncertainty, dynamic environments, distributed decision making, multi-agent coordination, and heterogeneity.
Series Editor Foreword Organization Preface Contents Parametrized Motion Planning and Topological Complexity 1 Introduction 2 Parametrized Motion Planning Algorithms 3 Multiple Robots and Obstacles in Euclidean Space 4 Upper and Lower Bounds for TC[p:EB] 5 Algorithm 5.1 Subsets Aj,t 5.2 Aggregation 5.3 The Generic Case 5.4 Sections and Fibrewise Deformations 5.5 Sets A2n, t 5.6 Swapping Deformations 5.7 The Section s2n, t 5.8 Desingularization 6 Motion Planning Algorithm in Even Dimensions 7 Parametrized Topological Complexity of Sphere Bundles and the Stiefel—Whitney Characteristic Classes 8 Examples References A New Application of Discrete Morse Theory to Optimizing Safe Motion Planning Paths 1 Introduction 2 Related Work 3 Foundations 4 Methodology 4.1 Feasible Critical Points in Cspace 4.2 Generating -Clearance Samples in the Cspace 5 Experimental Setup 6 Results 6.1 Topology Map 6.2 Comparison to RRT-Based Algorithms 6.3 Comparison to PRM-Based Algorithms 6.4 Comparison with Existing Work in a 2D Environment 7 Discussion 8 Conclusion References Design Space Exploration for Sampling-Based Motion Planning Programs with Combinatory Logic Synthesis 1 Introduction 2 Related Work 2.1 Type-Directed Synthesis 2.2 Learning and Design Space Exploration 3 Preliminaries 3.1 Multi-objective Optimization Problem 3.2 Black-Box Optimization 3.3 Combinatory Logic Synthesis 4 Architectural Overview 4.1 A Repository for Sampling Based Motion Planning 4.2 Encoding Domain Knowledge in Semantic Types 5 Experiments 5.1 3D Rigid Body Planning 5.2 Motion Planning for Configurable Robotic Arms 6 Discussion References Large-Scale Heterogeneous Multi-robot Coverage via Domain Decomposition and Generative Allocation 1 Introduction 2 Domain Decomposition 3 Generative Task Allocation 3.1 Preliminaries 3.2 Evolution-Guided GAN 4 Local Trajectory Planning and Coverage Calculation 5 Experiments 5.1 Coverage Comparison 5.2 Pareto Front Comparison 6 Conclusion References Efficient Motion Planning Under Obstacle Uncertainty with Local Dependencies 1 Introduction 1.1 Approximations in Planning with Environment Uncertainty 1.2 Related Work 1.3 Summary of Formal and Experimental Results 2 Definitions 2.1 Formal Problem Definition 2.2 Formal Definition of Collision Horizon 3 Algorithm 3.1 Application to MCR 4 Empirical Results 4.1 Moving Boxes Domain 4.2 Additional Experiments 5 Conclusion and Future Work References Distributed Spacing Control for Multiple, Buoyancy-Controlled Underwater Robots 1 Introduction 2 Preliminaries 2.1 Graph Theory 2.2 Potential Function 3 Problem Formulation 4 Technical Approach 4.1 Construction of Potential Function 4.2 Backstepping Controller Design 5 Simulation Results 6 Conclusion References Decentralized Robot Swarm Clustering: Adding Resilience to Malicious Masquerade Attacks 1 Introduction 2 Related Work 3 Notation and Problem Statements 3.1 Attack and IDRS Model 3.2 Formal Problem Statements 4 Distributed Swarm DBSCAN, Attack, and IDRS 5 Distributed Swarm k-Means: Algorithm, Attack, IDRS 6 Experiments 6.1 Silhouette Coefficient Performance Metric 6.2 Experimental Process 7 Discussion of Results 8 Conclusion References The Role of Heterogeneity in Autonomous Perimeter Defense Problems 1 Introduction 2 Problem Statement 2.1 Perimeter Defense Against Point Attacks 2.2 Different Settings 3 Infinite Horizon Theoretical Results 3.1 Dynamic Programming with Infinite Horizon 3.2 Monotonicity-Based Computational Acceleration 4 Unit Horizon Theoretical Results 4.1 Policy and Reward 4.2 Optimal Defender Policy 5 Simulation Results 5.1 Simulation Results 5.2 Simulations for Unit Horizon 6 Conclusion References PiP-X: Funnel-Based Online Feedback Motion Planning/Replanning in Dynamic Environments 1 Introduction 2 Related Work 3 Preliminaries 3.1 Invariant Set Theory 3.2 Verified Trajectory Libraries 3.3 Discrete Graph-Based Replanning Using Incremental Search 4 Problem Formulation 5 Approach 5.1 Graph Data Structure to Represent a Volumetric Funnel Network 5.2 Online Motion Planning-Replanning Algorithm—PiP-X 5.3 Precomputing Regions of Finite-Time Invariance 6 Experimental Validation 7 Results and Discussions 8 Conclusions References Sample-Efficient Safety Assurances Using Conformal Prediction 1 Introduction 2 Overview of Conformal Prediction 3 Conformal Prediction Framework for Robotics Applications 3.1 Problem Setup 3.2 Analysis of the Trade-off Between the FNR and FPR 3.3 Algorithm to Achieve Guaranteed Safety Assurances 3.4 Comparing Conformal Prediction with PAC Learning 4 Experiments: Driver Alert System 4.1 Experimental Setup 4.2 Results and Discussion 5 Experiments: Robotic Grasping 6 Conclusion 6.1 Proofs 6.2 Lower Bound on the False Positive Rate 6.3 Additional Experimental Details: Driver Alert System 6.4 Additional Experimental Details: Robotic Grasping Experiments References Adaptive Discretization Using Voronoi Trees for Continuous-Action POMDPs 1 Introduction 2 Background and Related Work 3 ADVT: Overview 4 ADVT: Construction of the Belief Tree 4.1 Action Selection Strategy 4.2 Backup 5 ADVT: Construction and Refinement of Voronoi Trees 5.1 Refining the Partition 5.2 Estimating the Voronoi Cell Diameters 5.3 Sampling from the Voronoi Cells 6 Experiments and Results 6.1 Problem Scenarios 6.2 Experimental Setup 6.3 Results 7 Conclusion References Hierarchical Reinforcement Learning Under Mixed Observability 1 Introduction 2 Background 3 Motion-Based MOMDPs 4 Hierarchical Reinforcement Learning Under Mixed Observability 4.1 Approach 4.2 Bottom-Level Policy Learning 4.3 Top-Level Policy Learning 4.4 Optimality Analysis 5 Related Work 6 Experiments 6.1 Domains 6.2 Agents 6.3 Learning Performance 6.4 Comparing Full, Final, and Recurrent 6.5 Robot Experiments for Two-Boxes 7 Conclusion and Future Work References Nondeterminism Subject to Output Commitment in Combinatorial Filters 1 Introduction 2 Basic Definitions 3 Some Examples Leading to Our Key Definition 3.1 An Interesting Filter and Two of Its Minimizers 3.2 Processing Inputs Incrementally and String Single-Output Filters 3.3 Classes of Minimizer 3.4 Aside: Single- And Multi-output Vertices 3.5 The Role of Output Simulation and Consistency Across Sequences 4 Hardness of fm(dfdf), fm(dfsso), and fm(dfsmo) 4.1 Complexity of fm(dfdf), fm(dfsso), and fm(dfsmo) 4.2 Minimization Problems with a Unitary Alphabet 5 Differences Between String Single-Output Minimization and General Tracing-Nondeterministic Minimization 6 Summary and Conclusion References Partial Satisfaction of Signal Temporal Logic Specifications for Coordination of Multi-robot Systems 1 Introduction 2 Preliminaries and Notation 2.1 Signal Temporal Logic 3 Problem Formulation 3.1 Team Dynamics 3.2 Partial Satisfaction Control Synthesis Problem 4 Partial Satisfaction Encoding 4.1 MILP Encoding of Satisfaction Fractions 4.2 Objective Functions for Partial Satisfaction 4.3 Partial Satisfaction Robustness LP 4.4 Analysis 5 Case Studies 5.1 Continuous Space Multi-robot Planning 5.2 Route Planning with Capability Temporal Logic (CaTL) 6 Conclusions References Information Theoretic Intent Disambiguation via Contextual Nudges for Assistive Shared Control 1 Introduction 2 Related Work 3 Mathematical Formalism 3.1 Modeling Limited Control-Interface Mediated Robot Teleoperation 3.2 Recursive Bayesian Goal Inference 3.3 Disambiguation Metric 4 Shared Control via Contextual Nudges 5 Experimental Design 5.1 Experimental Setup 5.2 Training Protocol 5.3 Algorithm Evaluation 6 Results 7 Discussion 8 Conclusion References The Limits of Learning and Planning: Minimal Sufficient Information Transition Systems 1 Introduction 2 Mathematical Models of Robot-Environment Systems 3 Sufficient Information Transition Systems 3.1 Information Transition Systems 3.2 History Information Spaces 3.3 Sufficient State-Relabeling 3.4 Derived Information Transition Systems 3.5 Lattice of Information Transition Systems 4 Solving Tasks Minimally 5 Illustrative Examples 6 Discussion References Towards a Framework for Comparing the Complexity of Robotic Tasks 1 Introduction 2 Related Work 3 Problem Formulation 4 Task Reduction 4.1 Background 4.2 Task Reduction: Definition and Properties 5 Examples of Reductions 5.1 Navigation to a Goal with Map Rotations 5.2 Grasping Objects with Differing Camera Viewpoints 6 Relative Complexity 7 Algorithmic Approach 8 Examples 8.1 Cartpole Balancing Task 8.2 Mujoco 2D Walker at Varied Speeds 9 Conclusion A Proof of Properties B Additional Experimental Details References Exponential Convergence of Infeasibility Proofs for Kinematic Motion Planning 1 Introduction 2 Related Work 3 Problem Definition 3.1 Infeasibility Proofs 3.2 Configuration Space Requirements 3.3 Summary of Infeasibility Proof Algorithm 4 Convergence Analysis 4.1 Requirements on the Learning Method 4.2 Preliminary Definitions 4.3 Proof of Convergence 4.4 Proof of Exponential Convergence 5 Experiments 6 Conclusion and Discussion A Appendix: Comparing PRM and RRT-Connect References Lane-Level Route Planning for Autonomous Vehicles 1 Introduction 2 Preliminaries 2.1 The Lane Graph Representation 2.2 A Stochastic Model for Lane Changes 2.3 The Markov Decision Process 3 Computing the Optimal Policy 3.1 Monotonicity Conditions 3.2 Dijkstra-Like Algorithm 3.3 Potential Heuristics 4 Experiments 5 Discussion References Finding and Optimizing Certified, Collision-Free Regions in Configuration Space for Robot Manipulators 1 Introduction and Related Work 2 Problem Formulation 3 Background 4 Technical Approach 4.1 Rational Parametrization of the Forward Kinematics 4.2 The SOS Certification Problem 4.3 Growing Polytopic Regions in Tangent-Configuration Space 5 Results 5.1 3-DOF Flipper System 5.2 7-DOF KUKA with Shelf 5.3 12-DOF Bimanual Example 6 Conclusion and Future Work A Definition of Archimedean B Practical Aspects B.1 Choosing the Reference Frame B.2 Basis Selection B.3 Parallelization B.4 Seeding the Algorithm C Supplementary Algorithms References Safe Output Feedback Motion Planning from Images via Learned Perception Modules and Contraction Theory 1 Introduction 2 Related Work 3 Preliminaries and Problem Statement 3.1 Problem Statement 3.2 Control/Observer Contraction Metrics (CCMs/OCMs) 4 Method 4.1 Learning a Perception Module for Contraction-Based Estimation 4.2 Bounding Tracking Error and State Estimation Error for Planning 4.3 Optimizing CCMs and OCMs for Output Feedback 4.4 Solving the OFMP 5 Results 6 Discussion and Conclusion References Implicit Multiagent Coordination at Uncontrolled Intersections via Topological Braids 1 Introduction 2 Related Work 3 Problem Statement 4 Preliminaries 4.1 Topological Braids 4.2 Transforming Traffic Trajectories into Braids 5 Decentralized Navigation as Braid Prediction 5.1 Reasoning About Braids of Multiagent Interaction 5.2 Decision Making 6 Application 6.1 Setup 6.2 Models 6.3 Experiment Design 6.4 Results 7 Discussion 7.1 Limitations References Active Uncertainty Reduction for Human-Robot Interaction: An Implicit Dual Control Approach 1 Introduction 2 Related Work 3 Preliminaries 4 Problem Statement 5 Active Uncertainty Reduction for Human-Robot Interaction 6 Simulation Results 6.1 Objective and Awareness Uncertainty (Example 1) 6.2 Behavioral and Cooperative Uncertainty (Example 2) 6.3 Multi-Agent Case Study 7 Discussion and Future Work References The Correlated Arc Orienteering Problem 1 Introduction 2 Related Work 3 CAOP: Problem Statement 4 Exact and Heuristic Approaches for CAOP 4.1 Mixed Integer Quadratic Program for CAOP 4.2 A Greedy Constructive Algorithm 4.3 ComputeRoute: Constructive Edge-Insertion Routing Heuristic 5 Application Scenarios for CAOP 5.1 Gas Leak Estimation 5.2 Coverage of Road Networks 6 Conclusion References Sample-Efficient Safe Learning for Online Nonlinear Control with Control Barrier Functions 1 Introduction 2 Preliminaries 2.1 Dynamical System and Stochastic Control 2.2 Discrete-Time Control Barrier Functions for Gaussian Dynamical Systems 2.3 Learning Objective 3 Algorithm and Analysis 3.1 Calibrated Model and Approximate Safety Guarantee 3.2 Optimism-Based Safe Learning for Control 4 Results 5 Conclusion References Morse Graphs: Topological Tools for Analyzing the Global Dynamics of Robot Controllers 1 Introduction 2 Problem Setup 3 Proposed Framework and Method 4 Results 5 Conclusion References Flock Navigation by Coordinated Shepherds via Reinforcement Learning 1 Introduction 2 Related Work 3 Problem Formulation 4 Method 5 Experiments and Results 6 Conclusion References Automatic Cross-domain Task Plan Transfer by Caching Abstract Skills 1 Introduction 1.1 Background 1.2 Motivation 1.3 Contribution 1.4 Related Work 2 Problem Definition 3 Scalable Skill Transfer Through an Abstract Domain 4 Skill Abstraction and Caching 4.1 Representing Transferable Skills as Traces of States 4.2 Abstraction Keys 4.3 Parametric Abstraction Keys 4.4 Abstract Skill Caching 4.5 Exemplary Abstraction Key: Attention 4.6 Exemplary Abstraction Key: Symbol Stripping 5 Abstract Skill Reconstruction and Transfer 5.1 Abstract Skill Applicability 5.2 Skill Feasibility 5.3 Skill Transfer Through an Abstract Domain: Recap 6 Conclusion A Algorithms References GOMP-ST: Grasp Optimized Motion Planning for Suction Transport 1 Introduction 2 Related Work 2.1 Motion Planning and Optimization 2.2 Constraint Learning in Optimization 2.3 Suction Grasping 2.4 Dynamic Manipulation 3 Problem Statement 4 Method 4.1 Background: GOMP-FIT 4.2 Learned Constraints in the SQP 4.3 Self-supervised Data Collection and Training 4.4 Analytic Model of Suction-cup Failure for GOMP-FIT Baseline 5 Experiments 5.1 Ablation Studies 5.2 Results 6 Conclusion References Error-Bounded Approximation of Pareto Fronts in Robot Planning Problems 1 Introduction 1.1 Related Work 2 Problem Statement 3 Problem Analysis 4 Algorithm 4.1 Algorithm Description 4.2 Algorithm Properties 5 Simulation Results 5.1 Experiment 1: Dubins Trajectories 5.2 Experiment 2: Reward Learning 6 Discussion and Future Work References GLiDE: Generalizable Quadrupedal Locomotion in Diverse Environments with a Centroidal Model 1 Introduction 2 Related Work 3 GLiDE: RL with Centroidal Model 4 Results 4.1 Learning Challenging Tasks with GLiDE 4.2 Sim-to-Real Tests 5 Evaluation 5.1 Test Scenarios 5.2 Evaluation Results 6 Discussion and Future Work References A Lower Bounding Framework for Motion Planning Amid Dynamic Obstacles in 2D 1 Introduction 2 Preliminaries 3 A Lower Bounding Problem Formulation 3.1 Bi-Level Discretization 3.2 Reachable Time Intervals and Self-Loops 3.3 Lower Bounding Problem Definition 4 Lower Bounding A* 4.1 LB-A* Overview 4.2 Compute Earliest Reachable Time 5 Analysis 5.1 Lower Bounds 5.2 Computational Complexity 6 Discussion 6.1 Edges Between Sub-Segments 6.2 Adding Expansion Constraints 7 Numerical Results 7.1 Experiment 1: Simple Instance with Known C* 7.2 Experiment 2: One Dynamic Obstacle 7.3 Experiment 3: Dynamic and Static Obstacles 7.4 With and Without the Expansion Constraint 7.5 Computational Burden 8 Conclusion References Author Index