دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Andrew Egbert
سری:
ناشر:
سال نشر: 2013
تعداد صفحات: 304
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Algebraic Geometry by Robin Hartshorne Full Solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هندسه جبری توسط رابین هارتشورن کامل راه حل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
I. Varieties I.1 x Ex, I.1.1 g x b. x g Ex, I.1.2 x g Ex, I.1.3 x g Ex, I.1.4 x g Ex, I.1.5 x Ex, I.1.6 x g Ex, I.1.7 x b. x (c) x. d x Ex, I.1.10 x (b). x g and I.2.7.a c. x d. x e. x I.2 x I.2.1 x homogenous nullstellensatz I.2.2 projective containments x I.2.3.a. containments. x b. x c. x d. x e. x b. x g and below c. x g I.2.5 (a) x g (b). x I.2.7 a. x g b. x I.2.8 x g I.2.9 x I.2.10 x b. x c. x g I.2.11 x g (use p2) b. x g x. c. x I.2.12 x g and below .b. x g and above and below (part d) c. x d. x g and above I.2.13 x g I.2.14 x g I.2.15 x g b. x c. x g I.2.16 x g b. x g I.2.17 x g complete intersections and below b. x g starred. I.3 x I.3.1 x g b. x g c. x g d. x g e. x g I.3.2 g bijective, bicontinuous but not isomorphism. x b. frobenius not isomorphism. x g I.3.3a. x b. x c. x I.3.4 x g I.3.5 x g I.3.6 x g I.3.7 a x. g b. x I.3.8 x g I.3.9 x g I.3.10 x I.3.11 x I.3.12 x g I.3.13 x g I.3.14 x g (and below) projection from point b. x g I.3.15 x b. x c. x d. x g I.3.16 x g b. x I.3.17 x. g b. x g c. x g d. x e. x. I.3.18.a x b. x g c. x I.3.19 x I.3.20 x g and below b. x g I.3.21a. x b. x c. x d. x e. x I.4.1 x g I.4.2 x I.4.3 x g and below b x. g I.4.4 x g all parts b. x g c. x g I.4.5 x g I.4.6 x g and below b. x g c. x I.4.7 x I.4.8 x g b. x g I.4.9 x g I.4.10 x g I.5 x I.5.1.a x I.5.1.b. x g what kind of singularities c. x d. x g what kind of singularity I.5.2a. x pinch point x b. x conical double point c. x I.5.3 x g b. x g I.5.4 x g b. x g c. x I.5.5 x I.5.6 x g b. x g c. x g d. x g I.5.7 x b. (important) x g c. x I.5.8 x I.5.9 x I.5.10 x g:a,b,c b. x c. x I.5.11 x I.5.12 x b. x c. x d. x. I.5.13 x I.5.14 x g b. x c. x d (starred) I.5.15 x g:a,b b. x I.6 x I.6.1 x g:a,b,c b. x c. x I.6.2 x g b. x c. x d. x e. x I.6.3 x I.6.4 x g I.6.5 x I.6.6 x g:a,c b. x c. x I.6.7 x g I.7 x I.7.1 x g b. x g I.7.2 x g arithmetic genus of projective space. b. x g c. x g important d. g x e. x I.7.3 x g I.7.4 x I.7.5 x g:a,b upper bound on multiplicity x b. x I.7.6 x Linear Varieties x I.7.7 x b. x I.7.8 x contained in linear subspace. x II Schemes II.1 x x II.1.1 Constant presheaf II.1.2 x g b. x c. x. II.1.3x surjective condition. x 2.1.3.b. x g Surjective not on stalks x II.1.4 x b. x x II.1.5 II.1.6.a x map to quotient is surjective II.1.6.b x II.1.7 x II.1.7.b x II.1.8 x g II.1.9 x Direct sum of sheaves x g II.1.10 x Direct Limits x II.1.11 x II.1.12 x II.1.13 Espace Etale x II.1.14 x g II.1.15 Sheaf Hom x: g II.1.16 g Flasque Sheaves x b. x c. x d. x g e. x sheaf of discontinuous sections II.1.17 x g skyscraper sheaves (important) II.1.18 x g Adjoint property of f^(-1) II.1.19 x g Extending a Sheaf by Zero (important?) b. g x extending by zero c. x II.1.20 x Subsheaf with Supports b. x II.1.21 g sheaf of ideals x b. x g c. x g d. x g e. x II.1.22 x g Glueing sheaves (important) II.2 II.2.1 x II.2.2 x g induced scheme structure. II.2.3 a. x reduced is stalk local x b. reduced scheme x c. x II.2.4 x II.2.5 x g II.2.6 x g II.2.7 x g II.2.8 x g Dual numbers + Zariski Tangent Space II.2.9 x g Unique Generic Point (Important) II.2.10 x g II.2.11 x g (Spec Fp important) II.2.12 x g Glueing Lemma II.2.13 x quasicompact vs noetherian. a b. x c. x d. x II.2.14 x b. x c. x d. x II.2.15x g (important) b. x c. x II.2.16 x b. x c. x d. x II.2.17 Criterion for affineness x b. x II.2.18 g x b. g x c. x g (important) d. g x II.2.19 x g II.3 x II.3.1 x II.3.2 x II.3.3 x b. x c. x II.3.4 x II.3.5 x g b. x g c. x II.3.6 x g Function Field II.3.7 x II.3.8 x Normalization II.3.9 x g Topological Space of a Product b. g x II.3.10 x g Fibres of a morphism b. x II.3.11 x g Closed subschemes b. (Starred) c. x d. x g scheme-theoretic image II.3.12 x Closed subschemes of Proj S b. x II.3.13 x g Properties of Morphisms of Finite Type b. x g c. x d. x e. x f. x g. x II.3.14 x g II.3.15 x b. x c. x II.3.16 x g Noetherian Induction II.3.17 x Zariski Spaces b. x g c. x g d. x g e. x g specialization f. x II.3.18x Constructible Sets b. x c. x d. x II.3.19 x b (starred) c. x d. x g II.3.20 x g Dimension b. x g c. x d. x g e. x g f. x II.3.21 x II.3.22* (Starred) II.3.23 x II.4 x stopped g'ing here II.4.1 x g Nice example valuative crit II.4.2 x II.4.3 x g II.4.4 x II.4.5 x g center is unique by valuative criterion b. x (starred) d. x II.4.6 x g II.4.7 x R-scheme b. x c. x d. x e. x II.4.8 x e. x f. x II.4.9 x g important - used stein factorization II.4.10 Chow's Lemma (starred) b part of starred c. part of starred d. part of starred II.4.11 x b. x II.4.12 x Examples of Valuation Rings b. (1) x (2) x (3) x II.5 x II.5.1 g x (b) g x (c) x g (d) x g Projection Formula II.5.2 (a) x (b) x II.5.3 x g II.5.4 x II.5.5 (a) x g b. x g closed immersion is finite. (c) x g II.5.6 (a) x g (b) x g (c) x g (d) x (e) x II.5.7 x b. x (c) x II.5.8 x (b) x (c) x II.5.9 x (b) x (c) x II.5.10 x (b) x (c) x (d) x II.5.11 x g II.5.12 x g (b) x g II.5.13 x II.5.14 x (b) x (c) x (d) x II.5.15 x Extension of Coherent Sheaves (b) x (c) x (d) x e. x II.5.16 xc a. g Tensor Operations on Sheaves (b) xc g (c) cx (d) x (e) xc II.5.17 x Affine Morphisms (b) x g (c) x g (used for stein factorization) d. x e. x II.5.18 x Vector Bundles b. x c. x d. x II.6 x Divisors II.6.1 x g II.6.2 (starred) Varieties in Projective Space II.6.4 x II.6.6 x g (b) x g (c) x g (d). x II.6.7 (starred) II.6.8 (a) x g (use easier method) (b) x (c) x II.6.9 (starred) Singular Curves (starred) II.6.10 x g The Grothendieck Group K(X) (b) x (c) x II.6.12 x g:1st paragraph II.7 x Projective Morphisms II.7.1 x g II.7.2 x II.7.3 x b. x II.7.4 a. x g b. x II.7.5 x g b. x g c. x g d. x g x g ample large multiple is very ample. x II.7.6 x g The Riemann Roch Problem b. x II.7.7 x g Some Rational Surfaces b. x c. x II.7.8 x sections vs quotient invertible sheaves II.7.9 x g b. x II.7.10 x P^n Bundles over a Scheme b. x g d. x II.7.11 x b. x c. x II.7.12 x g II.7.13 A Complete Nonprojective Variety * II.7.14 x g b. x II.8 x Differentials II.8.1 x b. x c. x d. x g II.8.2 x II.8.3 x g Product Schemes b. x g c. x g II.8.4 x Complete Intersections in Pn b. x g c. x g d. x g e. x g f. x g g. x g II.8.5 x g Relative Canonicals Important! b. x g II.8.6 x Infinitesimal Lifting Property b. x c. x II.8.7 x II.8.8 x II.9 Formal Schemes - skip III Cohomology III.1 III.2 x III.2.1.a x g III.2.2 x flasque resolution g III.2.3 x Cohomology with Supports b. x Flasque Global sections are exact III.2.2.c x x x excision x II.2.4 x Mayer-Vietoris III.2.5 x III.2.6 x x III.2.7a g Cohomology of circle b. x III.3 x Cohomology of a Noetherian Affine Scheme III.3.1 x III.3.2 x III.3.3 a is left exact. x b. x x III.3.4 x Cohomological Interpretation of Depth b. x III.3.5 x III.3.6 x part c. x III.3.7 x b. x III.3.8 x Localization not injective non noetherian. III.4 x Cech Cohomology III.4.1 x g pushforward cohomology affine morphism III.4.2 x b. x c. x III.4.3 g nice x III.4.4 x b. x c. x III.4.5 x III.4.6 x III.4.7 x III.4.8 x cohomological dimension b. x c x. e. x III.4.9 x III.4.10 (starred) III.4.11 x III.5 x Cohomology_Of_Projective_Space III.5.1 x g III.5.2 x b. x g III.5.3a. x Arithmetic genus III.5.3.b. x c. x g Important genus is birational invariant for curves!! b. x III.5.5 x g b. x g c. x g complete intersection cohomology. d. x g III.5.6 x curves on a nonsingular quadric b. x c. x III.5.7 x g x g ample iff red is ample c. x g d. x g finite pullbacks ampleness III.5.8.a x g b. x c. x g d. x III.5.9 x g Nonprojective Scheme III.5.10 x g III.6 x Ext Groups and Sheaves III.6.1x III.6.2.a. x b. x III.6.3.a. x b. x III.6.4 x III.6.5 x b. x c. x III.6.6.a x b. x III.6.7 x III.6.8 x b. x III.6.9 x b. x III.6.10 x Duality for Finite Flat Morphism b. x c. x d. x III.7 x Serre Duality Theorem III.7.1 x g Special Case Kodaira Vanishing III.7.2 x III.7.3 x Cohomology of differentials on Pn III.7.4 (starred) III.8 x Higher Direct Images of Sheaves III.8.1 x g Leray Degenerate Case III.8.2 x g III.8.3 x g Projection Formula derived III.8.4 x b. x c. x d. x e. x III.9 x Flat Morphisms III.9.1 x III.9.2 x twisted cubic III.9.3 x g b. x c. x III.9.4 x open nature of flatness III.9.5 x Very Flat Families b. x c. x d. x III.9.6 x III.9.7 x III.9.9 x rigid example III.9.10 x g b. x III.9.11 x interesting g III.10 x Smooth Morphisms III.10.1 x regular != smooth always III.10.2 x g III.10.3 x III.10.4 x III.10.5 x etale neighborhood x III.10.6 x g Etale Cover of degree 2. x III.10.7 x Serre's linear system with moving singularities b. x III.11 x Theorem On Formal Functions III.11.1 x g higher derived cohomology of plane minus origin. III.11.2 x g III.11.3 x III.11.4 x Principle of Connectedness III.12 x Semicontinuity III.12.1 x g upper semi-continuous tangent dimension III.12.2 x III.12.3 x Rational Normal Quartic III.12.4x III.12.5 x Picard Group of projective bundle IV Curves IV.1 x Riemann_Roch_Theorem x IV.1.1 g Regular except at a point x IV.1.2 g Regular Except pole at Points x IV.1.3 g Nonproper Curve is affine IV.1.4 x IV.1.5 x g Dimension less than degree IV.1.6 x g finite morphism to P1 IV.1.7 x g b. x g IV.1.8 x g arithmetic genus of a singular curve (b) x g Genus 0 is nonsingular. x g difference of very amples. x g Invertible sheaves are L(D) x. Alternative riemann-roch IV.1.10 g x IV.2 x Hurwitz Theorem IV.2.1x g projective space simply connected IV.2.2 x g classification of genus 2 curves b. x g c. x .x conclusion. x IV.2.3 x inflection points gauss map b. x multiple tangents. c. x g d. x g e. x g f. x g g. x g h. x IV.2.4 x g Funny curve in characteristic p IV.2.5 x Automorphisms f a curve in genus >= 2 b. x IV.2.6 x g pushforward of divisors b. x g c. x d. x branch divisor IV.2.7 x Etale Covers degree 2 b. x c. x IV.3 Embeddings In Projective Space IV.3.1 x g IV.3.2 x g :a,b,c b. x g c. x g IV.3.3 x g IV.3.4 x g b. x g c. x d. x g IV.3.5 x g b. x g c. x IV.3.6 x g Curves of Degree 4 b. x g IV.3.7 x IV.3.8 x b. x g No strange curves in char 0!!!! IV.3.9 x g IV.3.10 x g IV.3.11 x g b. x g IV.3.12 x g (just explain the advanced method) IV.4 Elliptic Curves IV.4.1 x g IV.4.2 x IV.4.3 x g IV.4.4 x IV.4.5 x b. x c. x d. x IV.4.6.a. x g b. x osculating hyperplanes c. x g IV.4.7 x g Dual of a morphism b. x c. x g e. x f. x IV.4.8 x Algebraic Fundamental Group IV.4.9 x g isogeny is equivalence relation. b. x g IV.4.10 x picard of product on genus 1 IV.4.11 x g b. x c. x IV.4.12.a x b. x IV.4.13 x IV.4.14 x Fermat Curve and Dirichlet's Theorem IV.4.15 x IV.4.16 x b.x g kernel of frobenius c. x d. x Hasse's Riemann Hypothesis for Elliptic Curves e. x IV.4.17 a. x b. x IV.4.18 x IV.4.19 x IV.4.20 x g Slight issue? c. x d. x IV.4.21 x skip - not algebraic geometry IV.5 Canonical Embedding IV.5.1 x g complete intersect is nonhyperelliptic IV.5.2 x g Aut X is finite. IV.5.3 x g Moduli of Curves of Genus 4 IV.5.4 x g x g IV.5.5 x g Curves of Genus 5 b. x g IV.5.6 x g IV.5.7.a x g IV.6 Curves In P3 IV.6.1 x g IV.6.2 x g IV.6.3 x g IV.6.4 x g IV.6.5 x g complete intersection doesn't lie on small degree surface IV.6.6 x g Projectively normal curves not in a plane IV.6.7 x g IV.6.8 x g IV.6.9 (starred) V Surfaces V.1 Geometry On A Surface V.1.1 x g Intersection Via Euler Characteristic V.1.2 x g Degree via hypersurface V.1.3 x g:a,b adjunction computational formula b. x g: with above c. x g V.1.4 x g Self intersection of rational curve on surface b. x. V.1.5 x g Canonical for a surface in P3 b. x g V.1.6 x g b. x g V.1.7 x Algebraic Equivalence of Divisors b. x c. x V.1.8 x g cohomology class of a divisor b. x g V.1.9 x g Hodge inequality b. x g V.1.10 x g Weil Riemann Hypothesis for Curves V.1.11 x g b. x g V.1.12 x g Very Ample not numerically equiv V.2 Ruled Surfaces V.2.1 x g V.2.2 x V.2.3 x x g tangent sheaf not extension of invertibles V.2.4 a x b. x V.2.5 x g b. x c. x d. x V.2.6 x g Grothendieck's Theorem V.2.7 x V.2.8.a x g decomposable is never stable b.x g c. x g V.2.9 x g Curves on Quadric Cone V.2.10 x V.2.11 x b. x V.2.12 x b. x b. x b. x c. x V.2.16 x V.2.17* (starred) V.3 Monoidal Transformations V.3.1 x g V.3.2 x g V.3.3 x g V.3.4 x Multiplicity of local ring b. x c. x d. x e. x V.3.5 x g hyperelliptic every genus V.3.6 x V.3.7 x V.3.8a,b x V.4 Cubic Surface V.4.1 x g P2 blown at 2 points V.4.2 x g V.4.3 x V.4.4 x g important? b. x V.4.5 x g Pascal's Theorem V.4.6 x g V.4.7 x V.4.9 x genus bound for cubic surface. V.4.10 x V.4.11 x Weyl Groups b. x V.4.12 x g kodaira vanishing for cubic surface b. x g V.4.14 x V.4.15 x admissible transformation b. x c. x g d. x V.4.16 x Fermat Cubic V.5 Birational Transformations V.5.1 x g Resolving singularities of f V.5.2 x g Castelnuovo Lookalike V.5.3 x g hodge numbers excercise V.5.4 x g hodge index theorem corollary x b. x g Hodge Index negative definite V.5.5 x g V.5.6 x V.5.7 x V.5.8 x A surface Singularity V.5.8.b. x Surface singularity V.6 Classification Of Surfaces V.6.1 x g V.6.2 x g