ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Algebraic Geometry by Robin Hartshorne Full Solutions

دانلود کتاب هندسه جبری توسط رابین هارتشورن کامل راه حل

Algebraic Geometry by Robin Hartshorne Full Solutions

مشخصات کتاب

Algebraic Geometry by Robin Hartshorne Full Solutions

ویرایش:  
نویسندگان:   
سری:  
 
ناشر:  
سال نشر: 2013 
تعداد صفحات: 304 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Algebraic Geometry by Robin Hartshorne Full Solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هندسه جبری توسط رابین هارتشورن کامل راه حل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

I. Varieties
	I.1 x
		Ex, I.1.1 g x
		b. x g
		Ex, I.1.2 x g
		Ex, I.1.3 x g
		Ex, I.1.4 x g
		Ex, I.1.5 x
		Ex, I.1.6 x g
		Ex, I.1.7 x
		b. x
		(c) x.
		d x
		Ex, I.1.10 x
		(b). x g and I.2.7.a
		c. x
		d. x
		e. x
	I.2 x
		I.2.1 x homogenous nullstellensatz
		I.2.2 projective containments x
		I.2.3.a. containments. x
		b. x
		c. x
		d. x
		e. x
		b. x g and below
		c. x g
		I.2.5 (a) x g
		(b). x
		I.2.7 a. x g
		b. x
		I.2.8 x g
		I.2.9 x
		I.2.10 x
		b. x
		c. x g
		I.2.11 x g (use p2)
		b. x g
		x.
		c. x
		I.2.12 x g and below
		.b. x g and above and below (part d)
		c. x
		d. x g and above
		I.2.13 x g
		I.2.14 x g
		I.2.15 x g
		b. x
		c. x g
		I.2.16 x g
		b. x g
		I.2.17 x g complete intersections and below
		b. x g
		starred.
	I.3 x
		I.3.1 x g
		b. x g
		c. x g
		d. x g
		e. x g
		I.3.2 g bijective, bicontinuous but not isomorphism. x
		b. frobenius not isomorphism. x g
		I.3.3a. x
		b. x
		c. x
		I.3.4 x g
		I.3.5 x g
		I.3.6 x g
		I.3.7 a x. g
		b. x
		I.3.8 x g
		I.3.9 x g
		I.3.10 x
		I.3.11 x
		I.3.12 x g
		I.3.13 x g
		I.3.14 x g (and below) projection from point
		b. x g
		I.3.15 x
		b. x
		c. x
		d. x g
		I.3.16 x g
		b. x
		I.3.17 x. g
		b. x g
		c. x g
		d. x
		e. x.
		I.3.18.a x
		b. x g
		c. x
		I.3.19 x
		I.3.20 x g and below
		b. x g
		I.3.21a. x
		b. x
		c. x
		d. x
		e. x
		I.4.1 x g
		I.4.2 x
		I.4.3 x g and below
		b x. g
		I.4.4 x g all parts
		b. x g
		c. x g
		I.4.5 x g
		I.4.6 x g and below
		b. x g
		c. x
		I.4.7 x
		I.4.8 x g
		b. x g
		I.4.9 x g
		I.4.10 x g
	I.5 x
		I.5.1.a x
		I.5.1.b. x g what kind of singularities
		c. x
		d. x g what kind of singularity
		I.5.2a. x pinch point x
		b. x conical double point
		c. x
		I.5.3 x g
		b. x g
		I.5.4 x g
		b. x g
		c. x
		I.5.5 x
		I.5.6 x g
		b. x g
		c. x g
		d. x g
		I.5.7 x
		b. (important) x g
		c. x
		I.5.8 x
		I.5.9 x
		I.5.10 x g:a,b,c
		b. x
		c. x
		I.5.11 x
		I.5.12 x
		b. x
		c. x
		d. x.
		I.5.13 x
		I.5.14 x g
		b. x
		c. x
		d (starred)
		I.5.15 x g:a,b
		b. x
	I.6 x
		I.6.1 x g:a,b,c
		b. x
		c. x
		I.6.2 x g
		b. x
		c. x
		d. x
		e. x
		I.6.3 x
		I.6.4 x g
		I.6.5 x
		I.6.6 x g:a,c
		b. x
		c. x
		I.6.7 x g
	I.7 x
		I.7.1 x g
		b. x g
		I.7.2 x g arithmetic genus of projective space.
		b. x g
		c. x g important
		d. g x
		e. x
		I.7.3 x g
		I.7.4 x
		I.7.5 x g:a,b upper bound on multiplicity x
		b. x
		I.7.6 x Linear Varieties x
		I.7.7 x
		b. x
		I.7.8 x contained in linear subspace. x
II Schemes
	II.1 x
		x II.1.1 Constant presheaf
		II.1.2 x g
		b. x
		c. x.
		II.1.3x surjective condition. x
		2.1.3.b. x g Surjective not on stalks x
		II.1.4 x
		b. x
		x II.1.5
		II.1.6.a x map to quotient is surjective
		II.1.6.b x
		II.1.7 x
		II.1.7.b x
		II.1.8 x g
		II.1.9 x Direct sum of sheaves x g
		II.1.10 x Direct Limits x
		II.1.11 x
		II.1.12 x
		II.1.13 Espace Etale x
		II.1.14 x g
		II.1.15 Sheaf Hom x: g
		II.1.16 g Flasque Sheaves x
		b. x
		c. x
		d. x g
		e. x sheaf of discontinuous sections
		II.1.17 x g skyscraper sheaves (important)
		II.1.18 x g Adjoint property of f^(-1)
		II.1.19 x g Extending a Sheaf by Zero (important?)
		b. g x extending by zero
		c. x
		II.1.20 x Subsheaf with Supports
		b. x
		II.1.21 g sheaf of ideals x
		b. x g
		c. x g
		d. x g
		e. x
		II.1.22 x g Glueing sheaves (important)
	II.2
		II.2.1 x
		II.2.2 x g induced scheme structure.
		II.2.3 a. x reduced is stalk local x
		b. reduced scheme x
		c. x
		II.2.4 x
		II.2.5 x g
		II.2.6 x g
		II.2.7 x g
		II.2.8 x g Dual numbers + Zariski Tangent Space
		II.2.9 x g Unique Generic Point (Important)
		II.2.10 x g
		II.2.11 x g (Spec Fp important)
		II.2.12 x g Glueing Lemma
		II.2.13 x quasicompact vs noetherian. a
		b. x
		c. x
		d. x
		II.2.14 x
		b. x
		c. x
		d. x
		II.2.15x g (important)
		b. x
		c. x
		II.2.16 x
		b. x
		c. x
		d. x
		II.2.17 Criterion for affineness x
		b. x
		II.2.18 g x
		b. g x
		c. x g (important)
		d. g x
		II.2.19 x g
	II.3 x
		II.3.1 x
		II.3.2 x
		II.3.3 x
		b. x
		c. x
		II.3.4 x
		II.3.5 x g
		b. x g
		c. x
		II.3.6 x g Function Field
		II.3.7 x
		II.3.8 x Normalization
		II.3.9 x g Topological Space of a Product
		b. g x
		II.3.10 x g Fibres of a morphism
		b. x
		II.3.11 x g Closed subschemes
		b. (Starred)
		c. x
		d. x g scheme-theoretic image
		II.3.12 x Closed subschemes of Proj S
		b. x
		II.3.13 x g Properties of Morphisms of Finite Type
		b. x g
		c. x
		d. x
		e. x
		f. x
		g. x
		II.3.14 x g
		II.3.15 x
		b. x
		c. x
		II.3.16 x g Noetherian Induction
		II.3.17 x Zariski Spaces
		b. x g
		c. x g
		d. x g
		e. x g specialization
		f. x
		II.3.18x Constructible Sets
		b. x
		c. x
		d. x
		II.3.19 x
		b (starred)
		c. x
		d. x g
		II.3.20 x g Dimension
		b. x g
		c. x
		d. x g
		e. x g
		f. x
		II.3.21 x
		II.3.22* (Starred)
		II.3.23 x
	II.4 x stopped g'ing here
		II.4.1 x g Nice example valuative crit
		II.4.2 x
		II.4.3 x g
		II.4.4 x
		II.4.5 x g center is unique by valuative criterion
		b. x
		(starred)
		d. x
		II.4.6 x g
		II.4.7 x R-scheme
		b. x
		c. x
		d. x
		e. x
		II.4.8 x
		e. x
		f. x
		II.4.9 x g important - used stein factorization
		II.4.10 Chow's Lemma (starred)
		b part of starred
		c. part of starred
		d. part of starred
		II.4.11 x
		b. x
		II.4.12 x Examples of Valuation Rings
		b. (1) x
		(2) x
		(3) x
	II.5 x
		II.5.1 g x
		(b) g x
		(c) x g
		(d) x g Projection Formula
		II.5.2 (a) x
		(b) x
		II.5.3 x g
		II.5.4 x
		II.5.5 (a) x g
		b. x g closed immersion is finite.
		(c) x g
		II.5.6 (a) x g
		(b) x g
		(c) x g
		(d) x
		(e) x
		II.5.7 x
		b. x
		(c) x
		II.5.8 x
		(b) x
		(c) x
		II.5.9 x
		(b) x
		(c) x
		II.5.10 x
		(b) x
		(c) x
		(d) x
		II.5.11 x g
		II.5.12 x g
		(b) x g
		II.5.13 x
		II.5.14 x
		(b) x
		(c) x
		(d) x
		II.5.15 x Extension of Coherent Sheaves
		(b) x
		(c) x
		(d) x
		e. x
		II.5.16 xc a. g Tensor Operations on Sheaves
		(b) xc g
		(c) cx
		(d) x
		(e) xc
		II.5.17 x Affine Morphisms
		(b) x g
		(c) x g (used for stein factorization)
		d. x
		e. x
		II.5.18 x Vector Bundles
		b. x
		c. x
		d. x
	II.6 x Divisors
		II.6.1 x g
		II.6.2 (starred) Varieties in Projective Space
		II.6.4 x
		II.6.6 x g
		(b) x g
		(c) x g
		(d). x
		II.6.7 (starred)
		II.6.8 (a) x g (use easier method)
		(b) x
		(c) x
		II.6.9 (starred) Singular Curves (starred)
		II.6.10 x g The Grothendieck Group K(X)
		(b) x
		(c) x
		II.6.12 x g:1st paragraph
	II.7 x Projective Morphisms
		II.7.1 x g
		II.7.2 x
		II.7.3 x
		b. x
		II.7.4 a. x g
		b. x
		II.7.5 x g
		b. x g
		c. x g
		d. x g
		x g ample large multiple is very ample. x
		II.7.6 x g The Riemann Roch Problem
		b. x
		II.7.7 x g Some Rational Surfaces
		b. x
		c. x
		II.7.8 x sections vs quotient invertible sheaves
		II.7.9 x g
		b. x
		II.7.10 x P^n Bundles over a Scheme
		b. x g
		d. x
		II.7.11 x
		b. x
		c. x
		II.7.12 x g
		II.7.13 A Complete Nonprojective Variety *
		II.7.14 x g
		b. x
	II.8 x Differentials
		II.8.1 x
		b. x
		c. x
		d. x g
		II.8.2 x
		II.8.3 x g Product Schemes
		b. x g
		c. x g
		II.8.4 x Complete Intersections in Pn
		b. x g
		c. x g
		d. x g
		e. x g
		f. x g
		g. x g
		II.8.5 x g Relative Canonicals Important!
		b. x g
		II.8.6 x Infinitesimal Lifting Property
		b. x
		c. x
		II.8.7 x
		II.8.8 x
	II.9 Formal Schemes - skip
III Cohomology
	III.1
	III.2 x
		III.2.1.a x g
		III.2.2 x flasque resolution g
		III.2.3 x Cohomology with Supports
		b. x Flasque Global sections are exact
		III.2.2.c x
		x
		x
		excision x
		II.2.4 x Mayer-Vietoris
		III.2.5 x
		III.2.6 x
		x III.2.7a g Cohomology of circle
		b. x
	III.3 x Cohomology of a Noetherian Affine Scheme
		III.3.1 x
		III.3.2 x
		III.3.3 a is left exact. x
		b. x
		x
		III.3.4 x Cohomological Interpretation of Depth
		b. x
		III.3.5 x
		III.3.6 x
		part c. x
		III.3.7 x
		b. x
		III.3.8 x Localization not injective non noetherian.
	III.4 x Cech Cohomology
		III.4.1 x g pushforward cohomology affine morphism
		III.4.2 x
		b. x
		c. x
		III.4.3 g nice x
		III.4.4 x
		b. x
		c. x
		III.4.5 x
		III.4.6 x
		III.4.7 x
		III.4.8 x cohomological dimension
		b. x
		c x.
		e. x
		III.4.9 x
		III.4.10 (starred)
		III.4.11 x
	III.5 x Cohomology_Of_Projective_Space
		III.5.1 x g
		III.5.2 x
		b. x g
		III.5.3a. x Arithmetic genus
		III.5.3.b. x
		c. x g Important genus is birational invariant for curves!!
		b. x
		III.5.5 x g
		b. x g
		c. x g complete intersection cohomology.
		d. x g
		III.5.6 x curves on a nonsingular quadric
		b. x
		c. x
		III.5.7 x g
		x g ample iff red is ample
		c. x g
		d. x g finite pullbacks ampleness
		III.5.8.a x g
		b. x
		c. x g
		d. x
		III.5.9 x g Nonprojective Scheme
		III.5.10 x g
	III.6 x Ext Groups and Sheaves
		III.6.1x
		III.6.2.a. x
		b. x
		III.6.3.a. x
		b. x
		III.6.4 x
		III.6.5 x
		b. x
		c. x
		III.6.6.a x
		b. x
		III.6.7 x
		III.6.8 x
		b. x
		III.6.9 x
		b. x
		III.6.10 x Duality for Finite Flat Morphism
		b. x
		c. x
		d. x
	III.7 x Serre Duality Theorem
		III.7.1 x g Special Case Kodaira Vanishing
		III.7.2 x
		III.7.3 x Cohomology of differentials on Pn
		III.7.4 (starred)
	III.8 x Higher Direct Images of Sheaves
		III.8.1 x g Leray Degenerate Case
		III.8.2 x g
		III.8.3 x g Projection Formula derived
		III.8.4 x
		b. x
		c. x
		d. x
		e. x
	III.9 x Flat Morphisms
		III.9.1 x
		III.9.2 x twisted cubic
		III.9.3 x g
		b. x
		c. x
		III.9.4 x open nature of flatness
		III.9.5 x Very Flat Families
		b. x
		c. x
		d. x
		III.9.6 x
		III.9.7 x
		III.9.9 x rigid example
		III.9.10 x g
		b. x
		III.9.11 x interesting g
	III.10 x Smooth Morphisms
		III.10.1 x regular != smooth always
		III.10.2 x g
		III.10.3 x
		III.10.4 x
		III.10.5 x etale neighborhood x
		III.10.6 x g Etale Cover of degree 2. x
		III.10.7 x Serre's linear system with moving singularities
		b. x
	III.11 x Theorem On Formal Functions
		III.11.1 x g higher derived cohomology of plane minus origin.
		III.11.2 x g
		III.11.3 x
		III.11.4 x Principle of Connectedness
	III.12 x Semicontinuity
		III.12.1 x g upper semi-continuous tangent dimension
		III.12.2 x
		III.12.3 x Rational Normal Quartic
		III.12.4x
		III.12.5 x Picard Group of projective bundle
IV Curves
	IV.1 x Riemann_Roch_Theorem
		x IV.1.1 g Regular except at a point
		x IV.1.2 g Regular Except pole at Points
		x IV.1.3 g Nonproper Curve is affine
		IV.1.4 x
		IV.1.5 x g Dimension less than degree
		IV.1.6 x g finite morphism to P1
		IV.1.7 x g
		b. x g
		IV.1.8 x g arithmetic genus of a singular curve
		(b) x g Genus 0 is nonsingular.
		x g difference of very amples.
		x g Invertible sheaves are L(D)
		x. Alternative riemann-roch
		IV.1.10 g x
	IV.2 x Hurwitz Theorem
		IV.2.1x g projective space simply connected
		IV.2.2 x g classification of genus 2 curves
		b. x g
		c. x
		.x
		conclusion. x
		IV.2.3 x inflection points gauss map
		b. x multiple tangents.
		c. x g
		d. x g
		e. x g
		f. x g
		g. x g
		h. x
		IV.2.4 x g Funny curve in characteristic p
		IV.2.5 x Automorphisms f a curve in genus >= 2
		b. x
		IV.2.6 x g pushforward of divisors
		b. x g
		c. x
		d. x branch divisor
		IV.2.7 x Etale Covers degree 2
		b. x
		c. x
	IV.3 Embeddings In Projective Space
		IV.3.1 x g
		IV.3.2 x g :a,b,c
		b. x g
		c. x g
		IV.3.3 x g
		IV.3.4 x g
		b. x g
		c. x
		d. x g
		IV.3.5 x g
		b. x g
		c. x
		IV.3.6 x g Curves of Degree 4
		b. x g
		IV.3.7 x
		IV.3.8 x
		b. x g No strange curves in char 0!!!!
		IV.3.9 x g
		IV.3.10 x g
		IV.3.11 x g
		b. x g
		IV.3.12 x g (just explain the advanced method)
	IV.4 Elliptic Curves
		IV.4.1 x g
		IV.4.2 x
		IV.4.3 x g
		IV.4.4 x
		IV.4.5 x
		b. x
		c. x
		d. x
		IV.4.6.a. x g
		b. x osculating hyperplanes
		c. x g
		IV.4.7 x g Dual of a morphism
		b. x
		c. x g
		e. x
		f. x
		IV.4.8 x Algebraic Fundamental Group
		IV.4.9 x g isogeny is equivalence relation.
		b. x g
		IV.4.10 x picard of product on genus 1
		IV.4.11 x g
		b. x
		c. x
		IV.4.12.a x
		b. x
		IV.4.13 x
		IV.4.14 x Fermat Curve and Dirichlet's Theorem
		IV.4.15 x
		IV.4.16 x
		b.x g kernel of frobenius
		c. x
		d. x Hasse's Riemann Hypothesis for Elliptic Curves
		e. x
		IV.4.17 a. x
		b. x
		IV.4.18 x
		IV.4.19 x
		IV.4.20 x g
		Slight issue?
		c. x
		d. x
		IV.4.21 x skip - not algebraic geometry
	IV.5 Canonical Embedding
		IV.5.1 x g complete intersect is nonhyperelliptic
		IV.5.2 x g Aut X is finite.
		IV.5.3 x g Moduli of Curves of Genus 4
		IV.5.4 x g
		x g
		IV.5.5 x g Curves of Genus 5
		b. x g
		IV.5.6 x g
		IV.5.7.a x g
	IV.6 Curves In P3
		IV.6.1 x g
		IV.6.2 x g
		IV.6.3 x g
		IV.6.4 x g
		IV.6.5 x g complete intersection doesn't lie on small degree surface
		IV.6.6 x g Projectively normal curves not in a plane
		IV.6.7 x g
		IV.6.8 x g
		IV.6.9 (starred)
V Surfaces
	V.1 Geometry On A Surface
		V.1.1 x g Intersection Via Euler Characteristic
		V.1.2 x g Degree via hypersurface
		V.1.3 x g:a,b adjunction computational formula
		b. x g: with above
		c. x g
		V.1.4 x g Self intersection of rational curve on surface
		b. x.
		V.1.5 x g Canonical for a surface in P3
		b. x g
		V.1.6 x g
		b. x g
		V.1.7 x Algebraic Equivalence of Divisors
		b. x
		c. x
		V.1.8 x g cohomology class of a divisor
		b. x g
		V.1.9 x g Hodge inequality
		b. x g
		V.1.10 x g Weil Riemann Hypothesis for Curves
		V.1.11 x g
		b. x g
		V.1.12 x g Very Ample not numerically equiv
	V.2 Ruled Surfaces
		V.2.1 x g
		V.2.2 x
		V.2.3 x
		x g tangent sheaf not extension of invertibles
		V.2.4 a x
		b. x
		V.2.5 x g
		b. x
		c. x
		d. x
		V.2.6 x g Grothendieck's Theorem
		V.2.7 x
		V.2.8.a x g decomposable is never stable
		b.x g
		c. x g
		V.2.9 x g Curves on Quadric Cone
		V.2.10 x
		V.2.11 x
		b. x
		V.2.12 x
		b. x
		b. x
		b. x
		c. x
		V.2.16 x
		V.2.17* (starred)
	V.3 Monoidal Transformations
		V.3.1 x g
		V.3.2 x g
		V.3.3 x g
		V.3.4 x Multiplicity of local ring
		b. x
		c. x
		d. x
		e. x
		V.3.5 x g hyperelliptic every genus
		V.3.6 x
		V.3.7 x
		V.3.8a,b x
	V.4 Cubic Surface
		V.4.1 x g P2 blown at 2 points
		V.4.2 x g
		V.4.3 x
		V.4.4 x g important?
		b. x
		V.4.5 x g Pascal's Theorem
		V.4.6 x g
		V.4.7 x
		V.4.9 x genus bound for cubic surface.
		V.4.10 x
		V.4.11 x Weyl Groups
		b. x
		V.4.12 x g kodaira vanishing for cubic surface
		b. x g
		V.4.14 x
		V.4.15 x admissible transformation
		b. x
		c. x g
		d. x
		V.4.16 x Fermat Cubic
	V.5 Birational Transformations
		V.5.1 x g Resolving singularities of f
		V.5.2 x g Castelnuovo Lookalike
		V.5.3 x g hodge numbers excercise
		V.5.4 x g hodge index theorem corollary x
		b. x g Hodge Index negative definite
		V.5.5 x g
		V.5.6 x
		V.5.7 x
		V.5.8 x A surface Singularity
		V.5.8.b. x Surface singularity
	V.6 Classification Of Surfaces
		V.6.1 x g
		V.6.2 x g




نظرات کاربران