ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Algebraic Curves: An Introduction to Algebraic Geometry

دانلود کتاب منحنی های جبری: مقدمه ای بر هندسه جبری

Algebraic Curves: An Introduction to Algebraic Geometry

مشخصات کتاب

Algebraic Curves: An Introduction to Algebraic Geometry

دسته بندی: جبر
ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 0805330828, 9780201510102 
ناشر:  
سال نشر: 2008 
تعداد صفحات: 132 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 834 کیلوبایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Algebraic Curves: An Introduction to Algebraic Geometry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب منحنی های جبری: مقدمه ای بر هندسه جبری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی

Preface Third Preface, 2008 This text has been out of print for several years, with the author holding copyrights. Since I continue to hear from young algebraic geometers who used this as their first text, I am glad now to make this edition available without charge to anyone interested. I am most grateful to Kwankyu Lee for making a careful LaTeX version, which was the basis of this edition; thanks also to Eugene Eisenstein for help with the graphics. As in 1989, I have managed to resist making sweeping changes. I thank all who have sent corrections to earlier versions, especially Grzegorz Bobi´nski for the most recent and thorough list. It is inevitable that this conversion has introduced some new errors, and I and future readers will be grateful if you will send any errors you find to me at wfulton@umich.edu. Second Preface, 1989 When this book first appeared, there were few texts available to a novice in modern algebraic geometry. Since then many introductory treatises have appeared, including excellent texts by Shafarevich,Mumford,Hartshorne, Griffiths-Harris, Kunz, Clemens, Iitaka, Brieskorn-Knörrer, and Arbarello-Cornalba-Griffiths-Harris. The past two decades have also seen a good deal of growth in our understanding of the topics covered in this text: linear series on curves, intersection theory, and the Riemann-Roch problem. It has been tempting to rewrite the book to reflect this progress, but it does not seem possible to do so without abandoning its elementary character and destroying its original purpose: to introduce students with a little algebra background to a few of the ideas of algebraic geometry and to help them gain some appreciation both for algebraic geometry and for origins and applications of many of the notions of commutative algebra. If working through the book and its exercises helps prepare a reader for any of the texts mentioned above, that will be an added benefit. PREFACE First Preface, 1969 Although algebraic geometry is a highly developed and thriving field of mathematics, it is notoriously difficult for the beginner to make his way into the subject. There are several texts on an undergraduate level that give an excellent treatment of the classical theory of plane curves, but these do not prepare the student adequately for modern algebraic geometry. On the other hand, most books with a modern approach demand considerable background in algebra and topology, often the equivalent of a year or more of graduate study. The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections. Chapter 1 begins with a summary of the facts we need from algebra. The rest of the chapter is concerned with basic properties of affine algebraic sets; we have given Zariski’s proof of the important Nullstellensatz. The coordinate ring, function field, and local rings of an affine variety are studied in Chapter 2. As in any modern treatment of algebraic geometry, they play a fundamental role in our preparation. The general study of affine and projective varieties is continued in Chapters 4 and 6, but only as far as necessary for our study of curves. Chapter 3 considers affine plane curves. The classical definition of the multiplicity of a point on a curve is shown to depend only on the local ring of the curve at the point. The intersection number of two plane curves at a point is characterized by its properties, and a definition in terms of a certain residue class ring of a local ring is shown to have these properties. Bézout’s Theorem and Max Noether’s Fundamental Theorem are the subject of Chapter 5. (Anyone familiar with the cohomology of projective varieties will recognize that this cohomology is implicit in our proofs.) In Chapter 7 the nonsingular model of a curve is constructed by means of blowing up points, and the correspondence between algebraic function fields on one variable and nonsingular projective curves is established. In the concluding chapter the algebraic approach of Chevalley is combined with the geometric reasoning of Brill and Noether to prove the Riemann-Roch Theorem. These notes are from a course taught to Juniors at Brandeis University in 1967– 68. The course was repeated (assuming all the algebra) to a group of graduate students during the intensive week at the end of the Spring semester. We have retained an essential feature of these courses by including several hundred problems. The results of the starred problems are used freely in the text, while the others range from exercises to applications and extensions of the theory. From Chapter 3 on, k denotes a fixed algebraically closed field. Whenever convenient (including without comment many of the problems) we have assumed k to be of characteristic zero. The minor adjustments necessary to extend the theory to arbitrary characteristic are discussed in an appendix. Thanks are due to Richard Weiss, a student in the course, for sharing the task of writing the notes. He corrected many errors and improved the clarity of the text. Professor PaulMonsky provided several helpful suggestions as I taught the course. “Je n’ai jamais été assez loin pour bien sentir l’application de l’algèbre à la géométrie. Je n’ai mois point cette manière d’opérer sans voir ce qu’on fait, et il me sembloit que résoudre un probleme de géométrie par les équations, c’étoit jouer un air en tournant une manivelle. La premiere fois que je trouvai par le calcul que le carré d’un binôme étoit composé du carré de chacune de ses parties, et du double produit de l’une par l’autre, malgré la justesse de ma multiplication, je n’en voulus rien croire jusqu’à ce que j’eusse fai la figure. Ce n’étoit pas que je n’eusse un grand goût pour l’algèbre en n’y considérant que la quantité abstraite; mais appliquée a l’étendue, je voulois voir l’opération sur les lignes; autrement je n’y comprenois plus rien.” Les Confessions de J.-J. Rousseau



فهرست مطالب

Preface 
1 Affine Algebraic Sets 
1.1 Algebraic Preliminaries
1.2 Affine Space and Algebraic Sets
1.3 The Ideal of a Set of Points             
1.4 The Hilbert Basis Theorem
1.5 Irreducible Components of an Algebraic Set
1.6 Algebraic Subsets of the Plane
1.7 Hilbert’s Nullstellensatz             
1.8 Modules; Finiteness Conditions            
1.9 Integral Elements               
1.10 Field Extensions                 
2 Affine Varieties
2.1 Coordinate Rings               
2.2 Polynomial Maps               
2.3 Coordinate Changes              
2.4 Rational Functions and Local Rings           
2.5 Discrete Valuation Rings             
2.6 Forms                    
2.7 Direct Products of Rings             
2.8 Operations with Ideals               
2.9 Ideals with a Finite Number of Zeros           
2.10 Quotient Modules and Exact Sequences          
2.11 Free Modules                
3 Local Properties of Plane Curves 
3.1 Multiple Points and Tangent Lines          
3.2 Multiplicities and Local Rings             
3.3 Intersection Numbers               
4 Projective Varieties 
4.1 Projective Space                 
4.2 Projective Algebraic Sets             
4.3 Affine and Projective Varieties           
4.4 Multiprojective Space               
5 Projective Plane Curves
5.1 Definitions                 
5.2 Linear Systems of Curves              
5.3 Bézout’s Theorem               
5.4 Multiple Points                 
5.5 Max Noether’s Fundamental Theorem         
5.6 Applications of Noether’s Theorem          
6 Varieties, Morphisms, and Rational Maps 
6.1 The Zariski Topology              
6.2 Varieties                   
6.3 Morphisms of Varieties               
6.4 Products and Graphs              
6.5 Algebraic Function Fields and Dimension of Varieties    
6.6 Rational Maps                
7 Resolution of Singularities
7.1 Rational Maps of Curves             
7.2 Blowing up a Point in A^2             
7.3 Blowing up Points in P^2             
7.4 Quadratic Transformations            
7.5 Nonsingular Models of Curves           
8 Riemann-Roch Theorem 
8.1 Divisors                  
8.2 The Vector Spaces L(D)             
8.3 Riemann’s Theorem              
8.4 Derivations and Differentials             
8.5 Canonical Divisors                
8.6 Riemann-Roch Theorem             
Appendix A - Nonzero Characteristic
Appendix B - Suggestions for Further Reading 
Appendix C - Notation




نظرات کاربران