دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مولکولی: بیوانفورماتیک ویرایش: نویسندگان: Macauley. Matthew, Robeva. Raina S (eds.) سری: Mathematics in Science and Engineering ISBN (شابک) : 9780128140666, 0128140666 ناشر: Academic Press, an imprint of Elsevier سال نشر: 2019 تعداد صفحات: 422 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Algebraic and combinatorial computational biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زیست شناسی محاسباتی جبری و ترکیبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زیست شناسی محاسباتی جبری و ترکیبی دانشجویان و محققان را با چشم انداز روش های قدرتمند و فعلی برای حل مسائل ریاضی در زیست شناسی محاسباتی مدرن آشنا می کند. هر موضوع در قالب مدولار ارائه شده است، مبانی بیولوژیکی این رشته را معرفی می کند، نظریه ریاضی تخصصی را پوشش می دهد، و با برجسته کردن ارتباط با تحقیقات در حال انجام، به ویژه سؤالات باز، به پایان می رسد. این کار به مشکلات مربوط به تنظیم ژن، علوم اعصاب، فیلوژنتیک، شبکه های مولکولی، مونتاژ و تا شدن ساختارهای زیست مولکولی، و استفاده از روش های خوشه بندی در زیست شناسی می پردازد. تعدادی از این فصل ها بررسی موضوعات جدیدی هستند که قبلاً در یک منبع واحد جمع آوری نشده اند. این موضوعات به این دلیل انتخاب شدند که استفاده از تکنیک از جبر و ترکیبات را که در حال تبدیل شدن به جریان اصلی در علوم زیستی هستند، برجسته میکنند.
Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences.
Cover Algebraic and Combinatorial Computational Biology Copyright Contributors Preface 1 Multiscale Graph-Theoretic Modeling of Biomolecular Structures Introduction The Molecules of Life Graph Theory Fundamentals Modeling RNA Structure RNA Secondary Structure Features Tree and Dual Graph Models of RNA Secondary Structure RNA Tree Graphs Using Graph Statistics to Understand RNA Secondary Structure RNA Dual Graphs Online RNA Resources Homework Problems and Projects RNA Structure and Matchings L&P Matchings The C&C Family Homework Problems and Projects Hierarchical Protein Models Weighted Graph Invariants Homework Problems and Projects References Further Reading 2 Tile-Based DNA Nanostructures Introduction Laboratory Process Graph Theoretical Formalism and Tools Flexible Tiles Flexible Tiles, Unconstrained Case Flexible Tiles, Constrained Case The Matrix of a Pot Rigid Tiles Computation by Self-Assembly Conclusion Resource Materials Acknowledgments References Further Reading 3 DNA rearrangements and graph polynomials Introduction Gene Assembly in Ciliates Biological Background Motivational Example Mathematical Preliminaries Mathematical Models for Gene Rearrangement Graphs Obtained From Double Occurrence Words Double Occurrence Words Corresponding to Graphs Graph Polynomials Transition Polynomial Assembly Polynomial Reduction Rules for the Assembly Polynomial Rearrangement Polynomial Generalizations Acknowledgments References 4 The Regulation of Gene Expression by Operons and the Local Modeling Framework Basic Biology Introduction The Central Dogma and Gene Regulation Types of Operons Two Well-Known Operons in E. coli The Lactose Operon The Arabinose Operon Continuous and Discrete Models of Biological Networks Differential Equation Models Bistability in Biological Systems Discrete Models of Biological Networks Local Models Polynomial Rings and Ideals for the Nonexpert Finite Fields Functions Over Finite Fields Boolean Networks and Local Models Asynchronous Boolean Networks and Local Models Phase Space Structure Local Models of Operons A Boolean Model of the lac Operon A Boolean Model of the ara Operon Analyzing Local Models With Computational Algebra Computing the Fixed Points Longer Limit Cycles Software for Local Models GINsim TURING: Algorithms for Computation With FDSs Concluding Remarks References 5 Modeling the Stochastic Nature of Gene Regulation With Boolean Networks Introduction Stochastic Discrete Dynamical Systems Long-Term Dynamics PageRank Algorithm Parameter Estimation Techniques Optimal Control for SDDS Control Actions Markov Decision Processes for SDDS Transition Probabilities Cost Function Optimal Control Policies Value Iteration Algorithm Discussion and Conclusions References 6 Inferring Interactions in Molecular Networks via Primary Decompositions of Monomial Ideals Introduction The Local Modeling Framework A Motivating Example of Reverse Engineering Stanley-Reisner Theory Monomial Ideals Square-Free Monomial Ideals Primary Decompositions Finding Min-Sets of Local Models Wiring Diagrams Feasible and Disposable Sets of Variables Min-Sets Over Non-Boolean Fields Finding Signed Min-Sets of Local Models The Pseudo-Monomial Ideal of Signed Nondisposable Sets A Non-Boolean Example Applications to a Real Gene Network Concluding Remarks References 7 Analysis of Combinatorial Neural Codes: An Algebraic Approach Introduction Biological Motivation: Neurons With Receptive Fields Receptive Field Relationships The Simplicial Complex of a Code The Neural Ideal Definition of the Neural Ideal The Neural Ideal and Receptive Field Relationships The Canonical Form Computing the Canonical Form Alternative Computation Method: The Primary Decomposition Sage Code for Computations Applications: Using the Neural Ideal Convex Realizability Dimension Concluding Remarks Acknowledgments References Further Reading 8 Predicting Neural Network Dynamics via Graphical Analysis Introduction Neuroscience Background and Motivation The CTLN Model Variety of Dynamics of CTLNs A CTLN as a Patchwork of Linear Systems How Graph Structure Affects Fixed Points Graphical Analysis of Stable and Unstable Fixed Points Graph Theory Concepts Stable Fixed Points Opening Exploration: Stable Fixed Point Supports Unstable Fixed Points Parity Sinks and Sources Uniform In-Degree Subgraphs Domination Using the Rules to Compute FP(G) Predicting Dynamic Attractors via Graph Structure Matlab Exploration: Sequences of Attractors Sequence Prediction Algorithm Symmetry of Graphs Acting on the Space of Attractors Acknowledgments Review of Linear Systems of ODEs References 9 Multistationarity in Biochemical Networks: Results, Analysis, and Examples Introduction Reaction Network Terminology and Background Chemical Reaction Networks and Their Dynamics Some Useful Notation The Jacobian Matrix Stoichiometry Classes Equilibria Nondegenerate Equilibria The Reduced Jacobian General Setup and Preliminaries Necessary Conditions for Multistationarity I: Injective CRNs Necessary Conditions for Multistationarity II: The DSR Graph Sufficient Conditions for Multistationarity: Inheritance of Multiple Equilibria Sufficient Conditions for Multistationarity II: The Determinant Optimization Method Results Based on Deficiency Theory The Deficiency Zero and Deficiency One Theorems The Deficiency One Algorithm and the Advanced Deficiency Algorithm Acknowledgments References 10 Polytopes and Linear Programming for Phylogenetics Introduction Phylogenetic Reconstructions and Interpretation Balanced Minimum Evolution Definitions and Notation Polytopes and Relaxations What Is a Polytope? The BME Polytope The Splitohedron Optimizing With Linear Programming Discrete Integer Linear Programming: The Branch and Bound Algorithm Recursive Structure: Branch Selection Strategy and Fixing Values Pseudocode for the Algorithm: PolySplit Neighbor Joining and Edge Walking NNI and SPR Moves, and FastMe 2.0 Summary References 11 Data Clustering and Self-Organizing Maps in Biology Clustering: An Introduction Clustering: A Basic Procedure Data Representation Clustering Algorithm Selection Cluster Validation Interpretation of Results Types of Clustering Hard Clustering Partitional Clustering Hierarchical Clustering Exercises Fuzzy Clustering Self-Organizing Maps SOM Applications to Biological Data Example 1: Water Composition Data Example 2: Grasshopper Size Data Group Project: Iris Data Set References 12 Toward Revealing Protein Function: Identifying Biologically Relevant Clusters With Graph Spectral Methods Introduction to Proteins Protein Structures Experimental Determination of Protein Structure Isofunctional Families Sequence Motifs and Logos Clustering of Data An Overview Clustering Methods Network Spectral Methods Spectral Clustering Spectral Clustering With Outliers Clustering to Identify Isofunctional Families Similarity Scores Based on Tertiary Structure References Index A B C D E F G H I J K L M N O P Q R S T U V W X Back Cover